3.2矩阵的三角分解法 我们知道对矩阵进行一次初等变换,就相 当于用相应的初等矩阵去左乘原来的矩阵。 因此我们这个观点来考察 Gauss消元法用 矩阵乘法来表示,即可得到求解线性方程 组的另一种直接法:矩阵的三角分解
3.2 矩阵的三角分解法 ◼ 我们知道对矩阵进行一次初等变换,就相 当于用相应的初等矩阵去左乘原来的矩阵。 因此我们这个观点来考察Gauss消元法用 矩阵乘法来表示,即可得到求解线性方程 组的另一种直接法:矩阵的三角分解
3.2.1Gaus消元法的矩阵形式 第步等价于:a≠O时,将a1,a…,m消零令h=5 则(1)行×(41)+()行1=23,,m,其矩阵形式为 (2) 2
3.2.1 Gauss消元法的矩阵形式 (1) (2) 1 (2) (2) 2 (2) (2) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) 1 3 1 2 1 1 (1) 1 1 (1) 1 1 1 1 1 3 1 1 2 1 (1) 1 1 ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 0 0 ...... 1 ... ...... 0 1 1 1 (1) ( ) ( ) i 2 3 ..., 1 : 0 , ,..., , 2 2 2 1 1 1 2 1 1 2 2 1 2 2 2 1 2 1 1 1 L A A a a a a a a a a a a a a a a a a l l l -l i n a a a a a a l n n n n n n n n n n n n i i n i = − − − + = = 行 行 ,, ,其矩阵形式为 第 步等价于 时,将 消零 令 则 ( ) ( ) ( )
阿理第2步等价于:若a2)≠0时,用矩阵 100 2 0-l 2 12 (2)(2) 左乘42,即有:L2421=00a3 00
(3) (3) (3) 3 (3) 3 (3) 3 3 (2) 2 (2) 2 3 (2) 2 2 (1) 1 (1) 1 3 (1) 1 2 (1) 1 1 2 2 2 (2) 2 2 (2) 2 2 2 2 3 2 (2) 2 2 0 0 ... ... ... ... ... ... 0 0 ... 0 ... ... : ( 3,4,..., ) 0 0 ... 1 ... ... ... 0 1 ... 0 0 1 0 ... 0 1 0 0 ... 0 2 0 A a a a a a a a a a a a A L A i n a a l l L l a n n n n n n ( ) ( ) i i n = = = = − = − 左乘 ,即有 同理第 步等价于:若 时,用矩阵
以此类推可得 13 o a n-11n-2… L2L1A=00 000 因为 2
= = = = − − − − 1 ... 1 1 1 ... ... 1 ... 1 1 0 0 0 ... ... ... ... ... ... 0 0 ... 0 ... ... ... 2 3 2 1 2 1 1 2 1 1 ( ) (3) 3 (3) 3 3 (2) 2 (2) 2 3 (2) 2 2 (1) 1 (1) 1 3 (1) 1 2 (1) 1 1 1 2 2 1 n n n n n n n n n n l L l l l L U a a a a a a a a a a L L L L A 因为 以此类推可得
所以A=(Ln1Ln2L2L1)U=LL2.,Lm2LnU U=LU n2 nn-I 其中L为单位下三角阵,U为上三角阵
其中 为单位下三角阵, 为上三角阵 所以 U ... 1 ... ... ... 1 1 1 ( ... ) ... 1 2 1 3 1 3 2 2 1 1 1 1 2 1 2 1 1 1 1 2 2 1 L U LU l l l l l l A L L L L U L L L L U n n n n n n n n = = = = − − − − − − − − − −