王注意如果 f(a 不存在 x→0 A加(S=存在,但mf(x)-ax不存在, x→0 x→0 可以断定y=f(x)不存在斜渐近线 例1求∫(x)= 2(x-2)(x+3) 的渐近线 x-1 解D:(-∞,1)∪(1,+ 上页
注意: ; ( ) (1) lim 不存在 如果 x f x x→ , lim[ ( ) ] , ( ) (2) lim a 存在 但 f x ax 不存在 x f x x x = − → → 可以断定 y = f (x)不存在斜渐近线. 例1 . 1 2( 2)( 3) 求 ( ) 的渐近线 − − + = x x x f x 解 D :(−,1)(1,+)
limf(x)=-∞,imf(x)=+∞, x→ ∴x=1是曲线的铅直渐近线 又∵lim =lim <(c-2)(x+3) f( =2, x→0 x→00 rx一 1) 2(x-2)(x+3) 2x] x→∞0x(x-1) 黑=m4(x-2)(x+3)-2x(x-1=4, x→0 y=2x+4是曲线的一条斜渐近线 上页
= → + lim ( ) 1 f x x − , = → − lim ( ) 1 f x x + , x = 1是曲线的铅直渐近线. = → x f x x ( ) 又lim ( 1) 2( 2)( 3) lim − − + → x x x x x = 2, 2 ] ( 1) 2( 2)( 3) lim[ x x x x x x − − − + → 1 2( 2)( 3) 2 ( 1) lim − − + − − = → x x x x x x = 4, y = 2x + 4是曲线的一条斜渐近线
∫(x)=2(x-2)(x+3) 的两条渐近线如图 x-1 100 50 50 100 上页
的两条渐近线如图 1 2( 2)( 3) ( ) − − + = x x x f x
二、图形描绘的步骤 利用函数特性描绘函数图形 第一步确定函数y=f(x)的定义域对函数进行奇 偶性、周期性、曲线与坐标轴交点等性态的讨论, 求出函数的一阶导数f(x)和二阶导数f(x); 工工工 第二步求出方程∫(x)=0和f(x)=0在函数定义 王域内的全部实根,用这些根同函数的间断点或导数 不存在的点把函数的定义域划分成几个部分区间 上页
二、图形描绘的步骤 利用函数特性描绘函数图形. 第一步 第二步 确定函数y = f (x)的定义域,对函数进行奇 偶性、周期性、曲线与坐标轴交点等性态的讨论, 求出函数的一阶导数 ( ) ' f x 和二阶导数 ( ) " f x ; 求出方程 ( ) 0 ' f x = 和 ( ) 0 " f x = 在函数定义 域内的全部实根,用这些根同函数的间断点或导数 不存在的点把函数的定义域划分成几个部分区间