例12求cos3xcos2xdx Rf cOS A cos B=.cos(A-B)+coS(A+B)l, 2 cos 3x cos 2x=-(cos x+ cos 5x). 2 Icos 3x cos 2xdx=J(cos x+cos 5.x)dx -Sinx+ sin5x +C 10
例12 求 解 cos3 cos2 . x xdx [cos( ) cos( )], 2 1 cos AcosB = A− B + A+ B (cos cos5 ), 2 1 cos 3xcos 2x = x + x x xdx = (cos x + cos5x)dx 2 1 cos 3 cos 2 sin5 . 10 1 sin 2 1 = x + x + C
例13求 cscd 解(-)「 cscd= dx sIn 22 2 an 2 2 tan- cos tan 2 2 2 In tan+C= In(csc x-cot x)+C (使用了三角函数恒等变形)
例13 求 解(一) = dx sin x 1 csc . xdx csc xdx = dx x x 2 cos 2 2sin 1 = 2 2 cos 2 tan 1 2 x d x x = 2 tan 2 tan 1 x d x C x = + 2 lntan = ln(csc x − cot x) +C. (使用了三角函数恒等变形)
解(=)Jscx=」 dx sInx g-d(cos x) u= cosx 1-cosx d 2(1-n1+u 1.1-u I-cos x n +C=In +C 21+L 2 1+cos x 类似地可推出 sec xdx= In(secx+tanx)+C
解(二) = dx sin x 1 csc xdx = dx x x 2 sin sin − = − (cos ) 1 cos 1 2 d x x u = cos x − = − du u 2 1 1 + + − = − du u 1 u 1 1 1 2 1 C u u + + − = 1 1 ln 2 1 . 1 cos 1 cos ln 2 1 C x x + + − = 类似地可推出 sec ln(sec tan ) . xdx = x + x + C
例14设∫(sin2x)=c0s2x,求f(x) 解令u=sin2x=cos2x=1-m f(u)=1-l, f(a)=J(1-n)n=-n2+C, f(x)=x +e +C
解例14 设 (sin ) cos , 求 . 2 2 f x = x f ( x ) 令 u x 2 = sin cos 1 , 2 x = − u f ( u ) = 1 − u, f (u) = (1− u)du , 21 2 = u − u + C . 21 ( ) 2 f x = x − x + C