四、列挠曲线方程PbaPb x?dwpbBA(-b2)EI6LdxL 2CXRRAC:Pb xXpbS(r -b2)xElw(x):6LL 6Pb x21P(x2 -a)_pbdw福(?-b2)EI6LL 22dxCB:Pb x2P(x -a)PbL2-b2)xElw(x2)L 66L6五、求0max、fmax:1、0max:简支梁:Omax一般发生在两端截面处Pab(L +a)108:a>b,..0=0=0maxmax6EIL
( ) 2 2 2 1 2 6 L b L x pb L Pb dx dw EI = − − ( ) ( ) 1 2 2 3 1 1 6 6 L b x L x pb L Pb EIw x = − − ( ) ( ) ( ) 2 2 2 3 2 3 2 2 6 6 6 L b x L x P x a Pb L Pb EIw x − − − = − ( ) ( ) 2 2 2 2 2 2 2 2 6 L b L x P x a pb L Pb dx dw EI − − − = − 四、列挠曲线方程 AC: CB: x P a b L A B x1 x2 五、求θmax、fmax: 1、θmax: 简支梁:θmax 一般发生在两端截面处 B = max a>b, ( ) max 6 = + = EIL Pab L a B c
P2、fmax:baBAC段可根据挠曲线线型判断f.所在梁段1AEL?-b2令: Elv(x)=0xo3PbV(L-b2)fmax = v (xo)=E9/3EIL讨论:若a=b,则x=0.5L13339PbL?若b→0,则x.=0.577L= w(0.577):Wmax9/3EIPbL?此时,W9/3=15.59中16EIW=W则可认为::对简支梁,若挠曲线上无拐点,max中
2、fmax: 可根据挠曲线线型判断fmax所在梁段: AC段. 令: ( ) 0 EIv1 x = 3 2 2 0 L b x − = ( ) ( ) EIL Pb L b f v x 9 3 3 2 2 max 1 0 − = = 讨论: 若a = b,则x0 = 0.5 L 若b→0,则x0 = 0.577 L ∴对简支梁,若挠曲线上无拐点,则可认为: ( ) EI PbL w w 9 3 0.577 2 max = = 此时, EI PbL w 16 2 = 中 中 wmax = w x P a b L A B x1 x2 c 9 3 =15.59