S63积分法求弯曲变形1MdWFCEIdxd'wEI= M(x)dr?dwEI0(x)= EI( M(x)dx+c积分一次:dx再积分一次:LM(x)dx dx + cx + DElw(x)= (C、D一积分常数
EI M dx d w = 2 2 ( ) 2 2 M x dx d w EI = 积分一次: = = M x dx + c dx dw EI (x) EI ( ) 再积分一次: EIw(x) = M (x)dx dx + cx + D C、D — 积分常数 §6—3 积分法求弯曲变形 F x y
积分常数CD由梁的位移边界条件和光滑连续条件确定。光滑连续条件位移边界条件AAAAAAAA金W =0WAL=WARWA=△WAL =WARW=00.=0△一弹簧变形OAL =OAR
积分常数C、D 由梁的位移边界条件和光滑连续 条件确定。 A A A A A A ~ ~ ~ ~ A ~ A A A A A ~ ~ ~ ~ ~ A A A A A A ~ ~ ~ ~ ~ A A A A A A ~ ~ ~ ~ ~ A A A A A A ~ ~ ~ ~ ~ wA = 0 wA = 0 A = 0 wA = 位移边界条件 光滑连续条件 wAL = wAR AL = AR wAL = wAR -弹簧变形
边界条件举例:BWA=02个①悬臂梁:X=0:0=0BX=0,WA=简支梁:2②012个WB=0X=L,FpllFp2B图示梁,M要分段,有M(x)、M,3Cx方wi(x)W2(x)相应的有:0(x)0,(x)共4个积分常数两个边界条件:X=0, WA=0,0=0两个连续光滑条件:X=a,W1c=W2c ic=Q2C
边界条件举例: ① 悬臂梁: ② 简支梁: ③ 图示梁,M要分段,有M1(x)、M2(x) x = 0: wA= 0 θA= 0 2个 2个 x = 0, wA= 0 x =L, wB= 0 相应的有: ( ) ( ) 1 1 x w x ( ) ( ) 2 2 x w x 共4个积分常数 两个边界条件: x = 0,wA = 0, θA= 0 两个连续光滑条件: x = a,w1c = w2c , θ1C= θ2C L A B x1 x2 B a b L A FP1 FP2 L A B
例:对图示梁进行变形分析PbaBA解:一、取坐标系,列挠曲线微分方程SRpbRA1.求反力:RA = RBL2.写M(x)M(x)pbAC: M(x) = Pbxz - P(x2 -α)CB: M(x,) :三XLI3.列挠曲线微分方程d'wpbd'wpbCB: EI-xz -P(xz -a)AC:EIXdr?dr?LL二、积分:XpbdwAC:EI+C2LdxXpbElw =+Cx +DL6
例:对图示梁进行变形分析 解:一、取坐标系,列挠曲线微分方程 1.求反力: 2.写M(x1)、M(x2) 1 1 : ( ) x L pb AC M x = x P(x a) L pb CB : M (x2 ) = 2 − 2 − x P(x a) L pb dx d w CB EI = − − 2 2 2 2 : 2 1 2 : x L pb dx d w AC EI = x P a b L A B x1 x2 RB RA L pb RA = 二、积分: 3.列挠曲线微分方程: 1 2 1 2 C x L pb dx dw AC: EI = + 1 1 1 3 1 6 C x D x L pb EIw = + + c
AC:CB:X,_PL+C,pbdwdwEIEI+C22LdxL2dxx P(x2-a)Xpbpb+C,x2 + D,EwElw=+C,x +DL66L6三、定常数:代入得: C,=C,连续光滑条件:==a: =D, = D,Wi = W2由边界条件:得: D, =0X =0,w, =0得: pb L_P(L-a)"X = L,W, = 0-+C,L=0,L 66PbpbaL?-b2B?A.C,=A6LCXMIN
1 1 1 3 1 6 C x D x L pb EIw = + + 1 2 1 2 C x L pb dx dw EI = + AC: CB: ( ) 2 2 2 3 2 3 2 6 6 C x D x P x a L pb EIw + + − = − ( ) 2 2 2 2 2 2 2 C x P x a L pb dx dw EI + − = − 三、定常数: 连续光滑条件: : 1 2 x = x = a 1 2 = w1 = w2 代入得: C1 = C2 D1 = D2 由边界条件: 0, 0 x1 = w1 = , 0 x2 = L w2 = 得: D1 = 0 ( ) 2 2 2 6 L b L pb C = − − ( ) 0, 6 6 2 3 3 + = − − C L L P L a L 得: pb x P a b L A B c