计算方法 第四章数值积分与数值微分 §43 Romberg算法
第四章 数值积分与数值微分 §4.3 Romberg算法
§43 Romberg算法 综合前几节的内容我们知道 梯形公式, Simpson公式 Cotes公式的代数精度分别为 1次,3次和5次 复合梯形、复合 Simpson、复合 Cotes公式的收敛阶分别为 2阶、4阶和6阶 无论从代数精度还是收敛速度,复合梯形公式都是较差的 有没有办法改善梯形公式呢?
§4.3 Romberg算法 综合前几节的内容,我们知道 梯形公式,Simpson公式,Cotes公式的代数精度分别为 1次,3次和5次 复合梯形、复合Simpson、复合Cotes公式的收敛阶分别为 2阶、4阶和6阶 无论从代数精度还是收敛速度,复合梯形公式都是较差的 有没有办法改善梯形公式呢?
复合梯形公式的递推化 将定积分/=f(x)的积分区间[ab分割为m等份 各节点为 k=a+ ih j=0,1,…,nh b 复合梯形( Trapz)公式为 b 2n If(a)+2∑f(x)+f(b) 1 如果将[a,b分割为2n等份,而h=(b-a)/n不变则 I2如f()+2∑f(x)+2∑f(x1)+/(b) 0
一、复合梯形公式的递推化 将定积分I f x dx的积分区间 a b 分割为n等份 b a ( ) [ , ] ò = xk = a + jh , j = 0,1,L,n n b a h - 各节点为 = [ ( ) 2 ( ) ( )] 2 1 1 å - = + + - = n j n j f a f x f b n b a T 复合梯形(Trapz)公式为 如果将[a,b]分割为2n等份,而h = (b - a)/n不变,则 [ ( ) 2 ( ) 2 ( ) ( )] 4 1 0 2 1 1 1 2 f a f x f x f b n b a T n j j n j n + j + + - = å å - = + - = --------(1) --------(2)
其中x1=x1+h=a+(+)h b 4n [f(a)+2∑f(x)+2∑f(x1)+f(b) 0 b-(a)+2/(x)+(b)+=2/(x) 0 =1r+b-2r(x)=1rn+bn/(a+(+ 0 j=0 b=a(a+(2)+1 n 2n j (3) 2n
[ ( ) 2 ( ) 2 ( ) ( )] 4 1 0 2 1 1 1 2 f a f x f x f b n b a T n j j n j n + j + + - = å å - = + - = x x h a j h j j ) 2 1 ( 2 1 2 1 = + = + + + 其中 å å - = + - = - + + + - = 1 0 2 1 1 1 2 ( ) 4 [ ( ) 2 ( ) ( )] 4 n j j n j j f x n b a f a f x f b n b a å - = + - = + 1 0 2 1 ( ) 2 2 1 n j j n f x n b a T å - = + + - = + 1 0 ) ) 2 1 ( ( 2 2 1 n j n f a j h n b a T å --------(3) - = - + + - = + 1 0 ) 2 ( (2 1) 2 2 1 n j n n b a f a j n b a T
n=1时,h=b-a 则由(1)(2)(3)式,有 b f(a)+∫(b) b f(a+h 若n=21记Tn=10(k-1)k=1,2,… b b-a x =a+ih=a+ 2 b X +h=a+(j+ a+(2j+1)
n = 1时,h = b - a 则由(1)(2)(3)式,有 [ ( ) ( )] 2 1 f a f b b a T + - = ) 2 1 ( 2 2 1 2 1 f a h b a T T + - = + (0) = T0 (1) = T0 ( 1) 记Tn = T0 k - 1 2 - = k 若n k = 1,2,L x a jh j = + 1 2 - - = k b a h x x h j j 2 1 2 1 = + + 1 2 ) 2 1 ( - - = + + k b a a j 1 2 - - = + k b a a j k b a a j 2 (2 1) - = + +