共轭复数的运算性质Z1(1)=(1) (±2)=±; ()=2;Z12(2) z = z(3)zz = x? + y2 =(Rez) +(Imz)(4)z + z = 2 Re(z)z - z = 2iIm(z)
共轭复数的运算性质 ( ) ( ) ; 1 1 2 1 2 z z = z z ( ) ; 1 2 1 2 z z = z z 2 1 2 1 ( ) z z z z = (2) z = z 2 Im( ) (4) 2Re( ) z z i z z z z − = + = ( ) ( ) ( ) 2 2 2 2 3 zz = x + y = Re z + Im z
设两复数z,=x,+i,z=x+i2例1.1证明 Z1 ·Z2 +zi ·Z2 =2Re(z1 ·z2).证Z1· Z2+ Z1 · Z2 =(xi +iy)(x2 -iy2)+(xi -iy)(x2 +iy2)=(x,x2 + yiy2)+i(x2y1 -Xiy2)+(xx2 + yiy2)+i(-x2yi +xi2)= 2(xX2 + yiy2) = 2Re(z1 · z2).或 2 ·2 + ·22 = 2· +2·三, =2Re(2·22)
12 例1.1 证 , , 1 1 1 2 2 2 设两复数 z = x +iy z = x +iy 2Re( ). 1 2 1 2 1 2 证明 z z + z z = z z z1 z2 + z1 z2 = ( )( ) ( )( ) 1 1 2 2 1 1 2 2 x + iy x − iy + x − iy x + iy ( ) ( ) 1 2 1 2 2 1 1 2 = x x + y y + i x y − x y ( ) ( ) 1 2 1 2 2 1 1 2 + x x + y y + i −x y + x y 2( ) 1 2 1 2 = x x + y y 2Re( ). 1 2 = z z 2Re( ). 1 2 1 2 1 2 1 2 1 2 或 z z + z z = z z + z z = z z
例1.1设 =3-4i,zz=-1+i,求与7Z23-4i(3-4i)(-1-i)Z1解-1+i(-1+i)(-1-i)Z27(-3 - 4) +(4 -3)i222122
解 12 3 4 1 z i z i − = − + (3 4 )( 1 ) ( 1 )( 1 ) i i i i − − − = − + − − ( 3 4) (4 3) 2 − − + − i = 7 1 . 2 2 = − + i 21 zz 7 1 . 2 2 = − − i 例 1.1 设 1 2 z i z i = − = − + 3 4 , 1 , 12 zz 求 与 12 . zz
例 1.2i=i,i4n = 1,i = -1,:4n+1=i,:4n+2i =i.i=-i,=-1,:4n+3i=i.=1,=-i,T;4n+4 = 1.-
例 1.2 1 i i = , 2 i = −1, 3 2 i i i i = = − , 4 2 2 i i i = = 1, . 1, 4 = n i , 4 1 i i n = + 1, 4 2 = − n+ i 4 3 , n i i + = − 4 4 1. n i + =
Z平面三、复平面P(xy)Y0作映射C→R2:z=x+iy(x,y)则在复数集与平面之间建立了一个1-1对应。x轴上的点表示实数,x轴称为实轴:y轴上的点表示纯虚数,y轴称为虚轴;整个坐标平面称为复平面或z平面
三、复平面 则在复数集与平面之间建立了一个1-1对 应。x轴上的点表示实数,x轴称为实轴, y轴上的点表示纯虚数,y轴称为虚轴;整 个坐标平面称为复平面或z平面。 : ( , ) 2 作映射C → R z = x +iy x y Z平面