Further Development of the Solution Approach 二重级数展开 a2u a2 ax2 ay2 u(x,y)=∑∑ mVt Cnm sin -.sin--y f(x,y)=∑∑am sIn-rsin n=1m=1 ★这种方法,实际上扩充了“相应齐次问题本征函数” 的概念 ★优点:无需解非齐次常微分方程
Imhomogeneous Steady State Problems Homogenization of Imhomogeneous BVC’s Laplacian in Orthogonal Curvilinear Coordinates Illustrative Example Further Development of the Solution Approach ?êÐm ∂ 2u ∂x2 + ∂ 2u ∂y2 = f(x, y) u(x, y) = X∞ n=1 X∞ m=1 cnm sin nπ a x sin mπ b y f(x, y) = X∞ n=1 X∞ m=1 dnm sin nπ a x sin mπ b y F ù«{§¢Sþ*¿ /Aàg¯K¼ê0 Vg F `:µÃI)àg~©§ C. S. Wu 1où ©lCþ{(n)
Further Development of the Solution Approach 二重级数展开 a2u a2 ax2 ay2 f( r, y u(x,y)=∑∑ mVt Cnm sin -.sin--y f(x,y)=∑∑am sIn-rsin n=1m=1 ★这种方法,实际上扩充了“相应齐次问题本征函数” 的概念 ★优点:无需解非齐次常微分方程 ★缺点:结果是二重级数.事实上,尚可求和
Imhomogeneous Steady State Problems Homogenization of Imhomogeneous BVC’s Laplacian in Orthogonal Curvilinear Coordinates Illustrative Example Further Development of the Solution Approach ?êÐm ∂ 2u ∂x2 + ∂ 2u ∂y2 = f(x, y) u(x, y) = X∞ n=1 X∞ m=1 cnm sin nπ a x sin mπ b y f(x, y) = X∞ n=1 X∞ m=1 dnm sin nπ a x sin mπ b y F ù«{§¢Sþ*¿ /Aàg¯K¼ê0 Vg F `:µÃI)àg~©§ F ":µ(J´?ꩯ¢þ§ÿ¦Ú C. S. Wu 1où ©lCþ{(n)
讲授要点 ③非齐次稳定问题 示例 方法的进一步发展 ②非齐次边界条件的齐次化 基本思路 特殊技巧:方程及边界条件同时齐次化 ③正交曲面坐标系下的 Laplace算符 。柱坐标系下的 aplace算符 球坐标系下的 Laplace算符
Imhomogeneous Steady State Problems Homogenization of Imhomogeneous BVC’s Laplacian in Orthogonal Curvilinear Coordinates Outlines Simultaneous Homogenization of . . . ùÇ: 1 àg½¯K «~ {?ÚuÐ 2 àg>.^àgz Äg´ AÏE|µ§9>.^Óàgz 3 ¡IXeLaplaceÎ ÎIXeLaplaceÎ ¥IXeLaplaceÎ C. S. Wu 1où ©lCþ{(n)
言 到目前为止,除了在稳定问题中需要有一部分边 界条件用于定叠加系数、因而允许是非齐次的以 外,在应用分离变量法解偏微分方程定解问题 时,我们总是要求边界条件是齐次的
Imhomogeneous Steady State Problems Homogenization of Imhomogeneous BVC’s Laplacian in Orthogonal Curvilinear Coordinates Outlines Simultaneous Homogenization of . . . Úó 8c§Ø 3½¯K¥IkÜ©> .^^u½U\Xê!Ï #N´àg± § 3A^©lCþ{) ©§½)¯K §·o´¦>.^´àg C. S. Wu 1où ©lCþ{(n)
言 为什么边界条件必须是齐次的?
Imhomogeneous Steady State Problems Homogenization of Imhomogeneous BVC’s Laplacian in Orthogonal Curvilinear Coordinates Outlines Simultaneous Homogenization of . . . Úó o>.^7L´àgº àg>.^ØU©lCþ k÷vàg§Úàg>.^A)U \å5âEU÷vàg§Úàg>.^ Ï9¼ê5 àg>.^XÛ?nº E±Åħ½)¯K~ C. S. Wu 1où ©lCþ{(n)