圆形区域中的稳定问题 定解问题 a2u a2u +-< ax2 ay2 分析 以下可按照分离变量法的标准步骤求解
Dirichlet Problem of Laplace Eqn in Circular Region Helmholtz Eqn in Orthogonal Curvilinear . . . Well-posed Problem in Circular Region Solutions of Well-posed Problem in Circular Region /«¥½¯K ½)¯K ∂ 2u ∂x2 + ∂ 2u ∂y2 = 0 x 2 + y 2 < a2 u x 2+y 2=a 2 = f ©Û ±eUì©lCþ{IOÚ½¦) (?) C. S. Wu 1Êù ©lCþ{(o)
圆形区域中的稳定问题 平面极坐标中的方程与边界条件 1a(duxiu r ar(ar)T r2 a 00<r<a ul=f(o) 令u(,以)=R(r)p( C. S. Wu
Dirichlet Problem of Laplace Eqn in Circular Region Helmholtz Eqn in Orthogonal Curvilinear . . . Well-posed Problem in Circular Region Solutions of Well-posed Problem in Circular Region /«¥½¯K ²¡4I¥§>.^ 1 r ∂ ∂r r ∂u ∂r + 1 r 2 ∂ 2u ∂φ2 = 0 0 < r < a u r=a = f(φ) ©Û -u(r, φ) = R(r)Φ(φ) C. S. Wu 1Êù ©lCþ{(o)
圆形区域中的稳定问题 平面极坐标中的方程与边界条件 1a(duxiu r ar(ar)T r2 a 00<r<a ul=f(o) 令u(,)=R(r)p(),代入方程,有 1心N∥)Rd2 dR 0 rd r2 do2 C. S. Wu
Dirichlet Problem of Laplace Eqn in Circular Region Helmholtz Eqn in Orthogonal Curvilinear . . . Well-posed Problem in Circular Region Solutions of Well-posed Problem in Circular Region /«¥½¯K ²¡4I¥§>.^ 1 r ∂ ∂r r ∂u ∂r + 1 r 2 ∂ 2u ∂φ2 = 0 0 < r < a u r=a = f(φ) ©Û -u(r, φ) = R(r)Φ(φ)§\§§k 1 r d dr r dR dr Φ + R r 2 d 2Φ dφ2 = 0 C. S. Wu 1Êù ©lCþ{(o)
圆形区域中的稳定问题 平面极坐标中的方程与边界条件 1a(duxiu r ar(ar)T r2 a 00<r<a ul=f(o) 令u(,)=R(r)p(),代入方程,有 r d dR 1d2④ rdr d d2=4 C. S. Wu
Dirichlet Problem of Laplace Eqn in Circular Region Helmholtz Eqn in Orthogonal Curvilinear . . . Well-posed Problem in Circular Region Solutions of Well-posed Problem in Circular Region /«¥½¯K ²¡4I¥§>.^ 1 r ∂ ∂r r ∂u ∂r + 1 r 2 ∂ 2u ∂φ2 = 0 0 < r < a u r=a = f(φ) ©Û -u(r, φ) = R(r)Φ(φ)§\§§k r R d dr r dR dr = − 1 Φ d 2Φ dφ2 = λ C. S. Wu 1Êù ©lCþ{(o)
圆形区域中的稳定问题 平面极坐标中的方程与边界条件 1a(duxiu r ar(ar)T r2 a 00<r<a ul=f(o) 分析 因此,可以分离变量 d dR 入R=0 d2④ d2+№p=0 C. S. Wu
Dirichlet Problem of Laplace Eqn in Circular Region Helmholtz Eqn in Orthogonal Curvilinear . . . Well-posed Problem in Circular Region Solutions of Well-posed Problem in Circular Region /«¥½¯K ²¡4I¥§>.^ 1 r ∂ ∂r r ∂u ∂r + 1 r 2 ∂ 2u ∂φ2 = 0 0 < r < a u r=a = f(φ) ©Û Ïd§±©lCþ r d dr r dR dr − λR = 0 d 2Φ dφ2 + λΦ = 0 C. S. Wu 1Êù ©lCþ{(o)