§3.7 线性糸统射域校正(2) §3.7.1反馈校正 反馈的作用 (3)局部正反馈可提高环节增益(减小被 包围环节的时间常数) R() KC(s) K 十 (s)=-+1 K h KK, Ts+1-KK Ts+1 h(t K K T s+1 响应 1-KK 反馈后响应 K K K T <T 1-KK, 1-KK T=1,K=1,Kh=0.8
§3.7 线性系统时域校正(2) §3.7.1反馈校正 反馈的作用 (1)减小被包围环节的时间常数 1 ( ) + = Ts K G s 1 1 ( ) + = + + = T s K Ts KK K G s h T KK T T h + = 1 K KK K K h + = 1 (2)深度负反馈可降低被包围环节的灵敏度 1 ( ) ( ) ( ) ( ) G s H s G s s + = G(s)H(s) 1 ( ) 1 1 ( ) ( ) ( ) ( ) G s H s H s G s s + = (3)局部正反馈可提高环节增益(减小被 包围环节的时间常数) 1 1 1 1 1 1 1 1 ( ) + = + − − = + − = + − + = T sK s KK T KK K Ts KK K Ts KK Ts K s h h h h K KK K K h − = 1 T KK T T h − = 1
§3.7. 反馈校正(1) 例2系统结构图如图所示。解.(1)K,=0时系统结构不稳定 2)k1>0时 109 K,<2:K,个→↑ 35/5on↓ Kis ≥2:K,个 a%=0 (1)K0时系统的性能? 5=0.707 a%=5%, (2)K时,o%s变化趋势? K.=1.414 t=0.495 2=0.707时,%,ts=? 100 K (3)G(s)= K (3)K,r(=t,es变化趋势? s(+10K) v K=10/K ξ=0.707时,ess= 个 K 个 K10
§3.7.1 反馈校正 (1) 例2 系统结构图如图所示。 (1)Kt=0 时系统的性能? (2)Kt 时,s, ts变化趋势? x=0.707时, s, ts =? (3)Kt ,r(t)=t ,ess变化趋势? x=0.707时, ess=? 解. (1) Kt = 0 时 2 100 ( ) s G s = ( ) 100 0 2 D s = s + = 100 100 ( ) 2 + = s s 系统结构不稳定! (2) Kt 0 时 ( 10 ) 100 ( ) Kt s s G s + = = = 1 10 v K K t 10 100 100 ( ) 2 + + = s K s s t = = = = 2 2 10 100 10 t n t n K K x = = s n t t t t K K K x s x x 2 3.5 2, 1 0 0 = s t t t K K 0 2, 1, 0 s 0 x = = = 1.414 0.707 2 t t K K x = = = 0.495 5 3.5 5 , 0 0 0 0 t s K t s (2) 时 (3) = s n t t t K K x s x 3.5 2 : 0 0 = s t t t K K 0 2 : 0 s 0 = = 1.414 0.707 Kt x = = 0.495 5 , 0 0 0 0 s t s Kt 0 K Kt = 10 / = = 10 1 t t ss K K K e ( 10 ) 100 ( ) Kt s s G s + = = = 1 10 v K K t