于是得下列各式: 6(c2-n7)=0a(+1)-n=0 G+k)-n}+a2=0(k=23 于是得到: C=±na1=0 暂取:C=n,由此得 k-2 k (k=2,3,…) k(2n+h)
0.8 1 0.6 0.4 0.2 0 x t 0 0.5 1 1.5 2 −1 −0.5 0 0.5 1 n 11 于是得下列各式: ( ) 0 2 2 a0 c − n = ( 1) 0 2 2 a1 c + − n = ( ) 0,( 2,3, ) 2 c + k 2 − n 2 ak + ak− = k = 于是得到: c = n a1 = 0 暂取 : c = n ,由此得: 2 ( 2,3,....) (2 ) k k a a k k n k − − = = +
由 0得 0 而 2(2n+2) 2.4(2n+2)(2n+4) 2.4.6(2n+2)(2n+4)(2n+6) 2.4.6…2m(2n+2)(2n+4)…(2n+2m)
0.8 1 0.6 0.4 0.2 0 x t 0 0.5 1 1.5 2 −1 −0.50 0.51 n 12 由 a 1 = 0 得 : a 1 = a 3 = a 5 = a 7 = = 0 0 2 2(2 2) a a n− = + 而 0 6 2 4 6(2 2)(2 4)(2 6) a a nnn − = + + + 0 4 2 4(2 2)(2 4) a a n n = + + 0 2 ( 1) 2 4 6 2 (2 2)(2 4) (2 2 ) m m a a m n n n m = − + + +