(3)根据上表,完成下面的折线统计图 频率 00 温国题 020406080100120140160180200实验总次数
20 40 60 80 100 120 140 160 180 200 0.5 0 1.0 0.2 0.7 频率 实验总次数 (3)根据上表,完成下面的折线统计图
(4)观察上面的折线统计图,你发现了什么规律? 当实验的次数较少时,折线在“0.5水平直线” 的上下摆动的幅度较大,随着实验的次数的增 加,折线在“0.5水平直线”的上下摆动的幅度 会逐渐变小 当试验次数很多时,正面朝上的频率折线 差不多稳定在“0.5水平直线”上
当试验次数很多时, 正面朝上的频率折线 差不多稳定在“ 0.5 水平直线” 上. (4)观察上面的折线统计图,你发现了什么规律? 当实验的次数较少时,折线在“0.5水平直线” 的上下摆动的幅度较大,随着实验的次数的增 加,折线在“0.5水平直线”的上下摆动的幅度 会逐渐变小
历史上掷硬币实验 下表列出了一些历史上的数学家所做的 掷硬币实验的数据: 试验者投掷正面出现 正面出现 次数n次数m 的频率mmn 布丰 4040 2048 0.5069 德摩根4092 2048 0.5005 费勒10000 4979 0.4979
试验者 投掷 次数n 正面出现 次数m 正面出现 的频率 m/n 布 丰 4040 2048 0.5069 德∙摩根 4092 2048 0.5005 费 勒 10000 4979 0.4979 下表列出了一些历史上的数学家所做的 掷硬币实验的数据: 历史上掷硬币实验
历史上掷硬币实验 试验者投掷正面出现 正面出现 次数n次数m 的频率mm 皮尔逊1200 6019 0.5016 皮尔逊24000 12012 0.5005 维尼30000 14994 0.4998 罗曼诺80640 39699 0.4923 夫斯基
皮尔逊 12000 6019 0.5016 皮尔逊 24000 12012 0.5005 维 尼 30000 14994 0.4998 罗曼诺 夫斯基 80640 39699 0.4923 试验者 投掷 次数n 正面出现 次数m 正面出现 的频率m/n 历史上掷硬币实验
分析试验结果及下面数学家大量重复试验数据, 大家有何发现? “正再向上” 频率 0.5 0204840401000012000 24000 抛掷次数n 试验次数越多频率越接近0.5
分析试验结果及下面数学家大量重复试验数据, 大家有何发现? 试验次数越多频率越接近0. 5. 抛掷次数n 0.5 2048 4040 1000012000 24000 “正面向上” 频率 0 m n