复数乘法设 z, =r(cos +isin )z2 = r2(cos, +isin 0,)ziz2 = rir2(cosQ, +isin Q)(cos, +isin 0,)= rir2[cos(, +0,)+isin(, +0,)]
复数乘法 设 (cos sin ), 1 1 1 1 z = r +i (cos sin ) 2 2 2 2 z = r +i (cos sin )(cos sin ) 1 2 1 2 1 1 2 2 z z = rr +i +i [cos( ) sin( )] = 1 2 1 + 2 + 1 + 2 rr i
定理:122=122Arg(z,z2) = Arg(z1)+ Arg(z2)Z,Z210X
定理: 1 2 1 2 z z = z z ( ) ( ) ( ) 1 2 1 2 Arg z z = Arg z + Arg z x y O 1 z 2 z 1 2 z z
指数形式表示(0+0LHZ,Z2 =reQe推广至有限个复数的乘法6Z,Z2.zn =rei(0 +02 +.. +0n)eW=rr2
指数形式表示 ( ) 1 2 1 2 1 2 1 2 1 + 2 = = i i i z z r e r e rr e 推广至有限个复数的乘法 ( ) 1 2 1 2 1 2 1 2 1 2 n n i n i n i i n r r r e z z z r e r e r e + + + = =
Z1 ± 0除法运算ZZZ12ArgzArg zz = ArgZ1Z2 = Arg z2 - Arg Z1ArgZ1Z或者12Oi(02-00riZ1利用复数的三角形式或指数形式作乘除法比较方便
除法运算 z1 0 1 1 2 2 z z z z = 1 1 2 2 z z z z = 1 1 2 Arg 2 Arg Arg z z z z = , 1 2 1 2 z z z z = 2 1 1 2 Arg Arg z - Arg z z z = ( ) 1 2 1 2 2 −1 = i e r r z 或者 z 利用复数的三角形式或指数形式作乘除法比较方便