1.1三种常用的坐标系K其面积元为:aadzdS, = dydzdx(1-1-3)dy4dS, = dxdzOds, = dxdy直角坐标系2、坐标单位矢量:ax,a,,aa xa,=a>相互正交( 1-1-1 )a,xa, =a符合右手螺旋法a.xa,=a则六面体的体积元是:Xdv = dxdydz(1.1.4)
1.1 三种常用的坐标系 ❖ 其面积元为: dS dxdy z = dS dydz x = dS dxdz y = (1-1-3) ❖ 六面体的体积元是: dV = dxdydz (1-1-4) 2 、坐标单位矢量: ax ay az , , ➢ 相互正交 ➢符合右手螺旋法 则 x y z a a a = y z x a a a = z x y a a a = ( 1-1-1 )
adrdl =dr100Tdl。=rdpadl_ =dzda圆柱坐标系a,xa=a心其面积元为!a.xa,=adS, = dl,dl, = rdpdz(1-1-5)(0a,xa,=a.dS. = dl.dl, = drdz(1-1-7)ds, = dl.dl. =rdrdp中六面体的体积元为:dV = dl.dl,dl. = rdrdodz(1-1-8)1
r z a a a = z r a a a = a a a z r = (1-1-5) ❖ 其面积元为: dS dl dl rd dz r = z = dS dl dl drdz = r z = dSz = dlr dl = rdrd (1-1-7) dV dl dl dl rdrd dz = r z = (1-1-8) ❖ 六面体的体积元为: dl dz z = dl dr r = dl = rd
长度元a( dlr = dr体积元:(1-1-11)dl。=rdo面积元:(dl = rsinod■其面积元为:球坐标系 dS, = dl.dl,= r2 sinodedpa,xa.=apa xa,=ardS。= dl,dl。= rsinddrdp(1-1-9) 3a, xa, =ag dS,= dl,dle = rdrdo体积元为:(1-1-12)dV = dl.dl,dl, = r? sindrddp
▪ 体积元为: dV dlr dl dl r sindrdd 2 = = dS = dlr dl = rdrd dSr dl dl r sindd 2 = = dS = dlr dl = r sindrd (1-1-12) ▪ 其面积元为: ar a a = a a ar = a ar a = (1-1-9) dl = r sind dl dr r = dl = rd (1-1-11) 长度元
四、三种坐标系的坐标变量之间的关系:为区别柱、球坐标系中的 及ar,球R及ar坐标系改为大写的2Rsine1、直角坐标系与柱坐标系的关系:M(x, y,z)-x=rcosp(r,p,z)(R,0,P)口人y= rsinp(1-1-14)z=zN@ = arctan口(1-1-15)xz=z
( , , ) x y z 四、三种坐标系的坐标变量之间的关系: 为区别柱、球坐标系中的 及 ,球 坐标系改为大写的 R 及 aR 。 ar r 1 、直角坐标系与柱坐标系的关系: y = r sin x = r cos z = z ❑ (1-1-14) ❑ 2 2 r = x + y x y = arctan z = z (1-1-15) y ( R, ,) x o M (r,,z) r R θ x y z Rsinθ z y
2、直角坐标系与球坐标系的关系:tZRsinex= Rsincos pMx,y,z)(r,p,2)y=RsinOsin@(1-1-16)8(R,0,p)yz =Rcos02+Xz=arccos(1-1-17)1β = arctan =x
2 2 2 R = x + y + z (1-1-17) arctan y x = 2 2 2 arccos z x y z = + + 2 、直角坐标系与球坐标系的关系: y ( , , ) x y z y ( R, ,) x o M (r,,z) r R θ x y z Rsinθ z y R = sin sin (1-1-16) x R = sin cos z R= cos