第五章g(y) = B'sha,y + B,cha,yb. g(y): y=0,Φ=0=g(0)=0=B, =0;k2+k2=0=((n)+(ja,)?由139n元则(n = 1,2,3......)a(5-2-2 5)ag(y) =Z B, h n故(n = 1,2,3......)SV1(5-2-2 6)an=ld(x, y) = f(x)·g(y)Cnπnd(x,y)=A,B,, sinxsh(n = 1,2,3.....Vaan=12025/6/1116电磁场理论
电磁场理论 2025/6/11 第五章 16 b. g( y) g y B sha y B cha y 1 y 2 y ( ) = + 0, 0 (0) 0 0; y = = g = B2 = 由 2 2 2 2 0 ( ) ( ) x y y j a a n k + k = = + 13 则 (n 1,2,3 ) a n ay = = 故 y (n 1,2,3 ) a n g y B sh n = n = = 1 ( ) (5-2-25) (5-2-26) c. (x, y) = f (x) g( y) y (n 1,2,3 ) a n xsh a n x y A B n = n n = = ( , ) sin 1
第五章n元n元d(x, y)=>(n = 1,2,3......)sinXsh1aan=1D,由边界条件=U(x)>y=b,0x≤α 确定00nπn元故(x,b)=U(x)=ZD, sin h(n = 1,2,3.....xshaan=1(5-2-2 7)- U(x)=Un元n元bUWD, sinxshd(x,b)=U。aan=ld(x)=0因上式右边为三角函数级数.要确定D.其左边也应展开成三角函数级数,亦称傅里叶级数,再比较其系数即可确定Dn2025/6/117电磁场理论
电磁场理论 2025/6/11 第五章 17 y (n 1,2,3 ) a n xsh a n x y D n = n = = ( , ) sin 1 故 (5-2-27) Dn 由边界条件 =U(x) y = b, 0 x a 确定. (x) = 0 b (n 1,2,3 ) a n xsh a n x b U x D n = = n = = ( , ) ( ) sin 1 ▪ 0 U(x) =U b a n xsh a n x b U D n n ( , ) sin 1 0 = = = 因上式右边为三角函数级数,要确定 , 其左边也应展开成三角函数级数,亦称 傅里叶级数,再比较其系数即可确定 . Dn Dn
第五章UWn元n元d(x,b)=U。=D, sin6xshaan=1d(x)=0m将上式两边同乘sin,再对x从 0a积分ra80n元m元n元m元axdx>DU.shbsin sinxdxxsinnaaaan=l0nmn元m元raa:xdxsinxsinn=mJoaa2则aaOm元bDsh一cosm元)(m=n =13,5......m2am元4U。D即(m =n= 1.3,5......)mm元bmπsh182025/6/11电磁场理论
电磁场理论 2025/6/11 第五章 18 b a n xsh a n x b U D n n ( , ) sin 1 0 = = = (x) = 0 将上式两边同乘 x a m sin ,再对x从0 a积分 xdx a m x a n b a n xdx D sh a m U a n n a sin sin sin 0 1 0 0 = = = = a n m a n m xdx a m x a n 0 2 0 sin sin 则 3 5 ) 2 (1 cos ) 0 b (m n 1, , a m D sh a m m a U − = m = = 即 (m n 1,3,5 ) b a m m sh U Dm = = = 0 4
第五章m=n=D.=D故当U(x)=U。时,4U.n元n元d(x,y)=(n = 13,5......)xshsinVn元baan=l nπsha元U(x)=U。sin =x因 U(x)已是三角函数a8元n元n元bDd(x,b)=U. sinsinxsh即x1aaan=1UU.元元则 D,d(x, yxshsinsh"bsh" baaaa192025/6/11电磁场理论
电磁场理论 2025/6/11 第五章 19 Dm Dn m = n = 故当 0 U(x) =U 时, ▪ x a U x U ( ) sin = 0 即 b a n xsh a n x D a x b U n n ( , ) sin sin 1 0 = = = y (n 1, , ) a n xsh a n b a n n sh U x y n sin 3 5 4 ( , ) 1 0 = = = 因 U(x) 已是三角函数 则 b a sh U D 0 1 = y a xsh a b a sh U x y ( , ) sin 0 =
第五章三、圆柱坐标系中的分离变量法:1、拉氏方程的展开式:a?d1 1 aad(5-2-28)Oz2aor Orar2、分离变量法:令 Φ(r,Φ,z) = f(r)·g(β)· h(z)(5-2-29)将(5-2-29)代入(5-2-28),且整理得:202025/6/11电磁场理论
电磁场理论 2025/6/11 第五章 20 三、圆柱坐标系中的分离变量法: 1、拉氏方程的展开式: 0 1 ( ) 1 2 2 2 2 2 2 = + + = r r z r r r (5-2-28) 令 (r,,z) = f (r) g()h(z) (5-2-29) 2、分离变量法: 将 (5-2-29) 代入 (5-2-28) ,且整理得: