学校代码:10246 学号:10210720188 復型大孥 硕士学位论文 CMOS工艺数字电视调谐器中校正技术的实现 院 系: 信息科学与技术 专 业: 集成电路工程 姓 名: 卓晨飞 指导教师: 唐长文 完成日期: 2012年5月1日
学校代码:10246 学 号:10210720188 硕 士 学 位 论 文 CMOS 工艺数字电视调谐器中校正技术的实现 院 系: 信息科学与技术 专 业: 集成电路工程 姓 名: 卓晨飞 指 导 教 师: 唐长文 完 成 日 期: 2012 年 5 月 1 日
目录 图目录… …l川 表目录… …V 摘要… VI Abstract................ Vll 第一章概述… …1 1.1研究背景 1 1.2研究动机 1 1.3论文结构… 2 参考文献… 2 第二章器件的偏差与失配… 5 2.1偏差的来源… ⑤ 2.1.1系统偏差… 5 2.1.2工艺偏差… 1 2.1.3随机偏差… > 2.2温度和老化… P 2.2.1温度对器件的影响 8 2.2.2老化的影响… 9 23器件的匹配… 10 2.3.1MOS管的匹配 11 2.3.2运放直流失调的计算方法 16 2.3.3电容的匹配… 19 2.3.4电阻的匹配… 20 参考文献 21 第三章滤波器的分析与设计… …23 3.1滤波器原理… 23 3.1.1理想滤波器和实际滤波器 23 3.1.2常见函数的对比 25 3.1.3函数类型的选择 29 3.2滤波器的实现…31 3.2.1滤波器实现方式的对比… 31 3.2.2 Active-RC和Gm-C积分器 32
I 目录 图目录 ···························································································III 表目录 ··························································································· V 摘要 ····························································································· VI Abstract ······················································································ VII 第一章 概述···················································································· 1 1.1 研究背景············································································· 1 1.2 研究动机············································································· 1 1.3 论文结构············································································· 2 参考文献 ·················································································· 2 第二章 器件的偏差与失配·································································· 5 2.1 偏差的来源·········································································· 5 2.1.1 系统偏差 ···································································· 5 2.1.2 工艺偏差 ···································································· 7 2.1.3 随机偏差 ···································································· 7 2.2 温度和老化·········································································· 8 2.2.1 温度对器件的影响 ························································ 8 2.2.2 老化的影响 ································································· 9 2.3 器件的匹配·········································································10 2.3.1 MOS 管的匹配 ···························································· 11 2.3.2 运放直流失调的计算方法 ··············································16 2.3.3 电容的匹配 ································································19 2.3.4 电阻的匹配 ································································20 参考文献 ·················································································21 第三章 滤波器的分析与设计······························································23 3.1 滤波器原理·········································································23 3.1.1 理想滤波器和实际滤波器 ··············································23 3.1.2 常见函数的对比 ··························································25 3.1.3 函数类型的选择 ··························································29 3.2 滤波器的实现······································································31 3.2.1 滤波器实现方式的对比 ·················································31 3.2.2 Active-RC 和 Gm-C 积分器 ············································32
3.3低阶有源滤波器的实现… …35 3.3.1 Sallen-Key滤波器…36 3.3.2Tow-Thomas滤波器 37 3.3.3零点的作用 38 3.4高阶有源滤波器的实现… 39 3.5用于多模数字电视接收机的6阶低通滤波器… 40 3.5.1系统要求… 41 3.5.2有传输零点的Tow-Thomas Biquad… 42 3.5.3截止频率和增益的配置 44 3.5.4 Biquad级联问题… 45 参考文献… 48 第四章工艺偏差的校正 …49 4.1前言 49 4.2电阻电容偏差的检测与校正 50 4.2.1偏差检测… 51 4.2.2滤波器频率的校正… 52 4.2.3电流基准的校正… 53 4.3电路设计… 54 4.3.1模拟部分… 54 4.3.2数字逻辑部分 55 4.4仿真结果… 57 4.4.1电阻电容偏差检测电路的仿真结果…57 4.4.2校正结果对比… 58 4.5电路性能总结分析 61 参考文献 62 第五章总结与展望… 63 5.1总结… 63 5.2展望… 63 致谢… …65 八
II 3.3 低阶有源滤波器的实现··························································35 3.3.1 Sallen-Key 滤波器························································36 3.3.2 Tow-Thomas 滤波器·····················································37 3.3.3 零点的作用 ································································38 3.4 高阶有源滤波器的实现··························································39 3.5 用于多模数字电视接收机的 6 阶低通滤波器·······························40 3.5.1 系统要求 ···································································41 3.5.2 有传输零点的 Tow-Thomas Biquad ·································42 3.5.3 截止频率和增益的配置 ·················································44 3.5.4 Biquad 级联问题··························································45 参考文献 ·················································································48 第四章 工艺偏差的校正····································································49 4.1 前言··················································································49 4.2 电阻电容偏差的检测与校正····················································50 4.2.1 偏差检测 ···································································51 4.2.2 滤波器频率的校正 ·······················································52 4.2.3 电流基准的校正 ··························································53 4.3 电路设计············································································54 4.3.1 模拟部分 ···································································54 4.3.2 数字逻辑部分 ·····························································55 4.4 仿真结果············································································57 4.4.1 电阻电容偏差检测电路的仿真结果 ··································57 4.4.2 校正结果对比 ·····························································58 4.5 电路性能总结分析································································61 参考文献 ·················································································62 第五章 总结与展望··········································································63 5.1 总结··················································································63 5.2 展望··················································································63 致谢 ·······················································································65
图目录 图2-1二维效应导致器件实际尺寸不同于版图掩膜 .5 图2-2离子注入时由于离子散射导致阱边缘上的邻近效应...6 图2-3ST引应力影响周围的器件参数...… ..6 图2-4p管输入的简单两级运放..... .10 图2-5有参数偏差的MOS管及其小信号等效电路..12 图2-6电压偏置的晶体管一一电流镜 .12 图2-7简单的NMOS差分对管.. .13 图2-8偏置电流相等的MOS管.... ..14 图2-9跨导电流比gmllos和过驱动电压Vcs-V的关系[12].… .15 图2-10尺寸为0.25m/0.25um的NM0S管的电流失配12]16 图2-11尺寸为0.25μm/0.25m的NMOS管的栅-源电压失配[12].16 图2-12全差分跨导运算放大器... .17 图2-13全差分OTA参数偏差的小信号等效电路...… ..18 图3-1理想低通滤波器的频率响应.… 23 图3-2实际低通滤波器的频率响应及指标..24 图3-35阶巴特沃斯滤波器的幅频响应和相频响应 .24 图3-4巴特沃斯滤波器的极点分布.. 26 图3-5切比雪夫与巴特沃斯极点的相对位置. 27 图3-6反切比雪夫滤波器的零极点分布.… 28 图3-7贝塞尔滤波器的极点分布.… 28 图3-8椭圆滤波器的零极点分布… 29 图3-95种函数的5阶低通滤波器幅频响应对比 30 图3-10不同频率的应用中选择不同类型的滤波器 31 图3-11滤波器的实现方式.。 .32 图3-12 Active-RC积分/求和电路 33 图3-13线性区MOS管代替电阻.… .34 图3-14Gm-C积分和求和电路..… 34 图3-15一阶有源低通滤波器 35 图3-16 Sallen-Key二阶低通滤波器 .36 图3-17Tow-Thomas Biquad电路原理图 37 图3-18二阶低通滤波器添加零点后的零极点分布.39
III 图目录 图 2-1 二维效应导致器件实际尺寸不同于版图掩膜........................................5 图 2-2 离子注入时由于离子散射导致阱边缘上的邻近效应.............................6 图 2-3 STI 应力影响周围的器件参数..............................................................6 图 2-4 p 管输入的简单两级运放...................................................................10 图 2-5 有参数偏差的 MOS 管及其小信号等效电路 ......................................12 图 2-6 电压偏置的晶体管——电流镜...........................................................12 图 2-7 简单的 NMOS 差分对管....................................................................13 图 2-8 偏置电流相等的 MOS 管...................................................................14 图 2-9 跨导电流比 gm/IDS和过驱动电压 VGS-VT的关系[12] ..........................15 图 2-10 尺寸为 0.25μm/0.25μm 的 NMOS 管的电流失配[12].......................16 图 2-11 尺寸为 0.25μm/0.25μm 的 NMOS 管的栅–源电压失配[12]..............16 图 2-12 全差分跨导运算放大器....................................................................17 图 2-13 全差分 OTA 参数偏差的小信号等效电路 .........................................18 图 3-1 理想低通滤波器的频率响应...............................................................23 图 3-2 实际低通滤波器的频率响应及指标....................................................24 图 3-3 5 阶巴特沃斯滤波器的幅频响应和相频响应 ......................................24 图 3-4 巴特沃斯滤波器的极点分布...............................................................26 图 3-5 切比雪夫与巴特沃斯极点的相对位置 ................................................27 图 3-6 反切比雪夫滤波器的零极点分布........................................................28 图 3-7 贝塞尔滤波器的极点分布 ..................................................................28 图 3-8 椭圆滤波器的零极点分布 ..................................................................29 图 3-9 5 种函数的 5 阶低通滤波器幅频响应对比..........................................30 图 3-10 不同频率的应用中选择不同类型的滤波器 .......................................31 图 3-11 滤波器的实现方式 ...........................................................................32 图 3-12 Active-RC 积分/求和电路 ................................................................33 图 3-13 线性区 MOS 管代替电阻.................................................................34 图 3-14 Gm-C 积分和求和电路 ....................................................................34 图 3-15 一阶有源低通滤波器 .......................................................................35 图 3-16 Sallen-Key 二阶低通滤波器 ............................................................36 图 3-17 Tow-Thomas Biquad 电路原理图 ....................................................37 图 3-18 二阶低通滤波器添加零点后的零极点分布 .......................................39
图3-19二阶低通滤波器添加零点后的幅频响应曲线 ..39 图3-205阶无源LC阶梯滤波器..… .40 图3-21无源LC网络综合得到的5阶有源滤波器 40 图3-22 Biquad级联的高阶滤波器 .40 图3-23零中频数字电视接收机结构图. .41 图3-24Tow-Thomas Biquad的一种结构..... ..42 图3-25差分形式的Tow-Thomas Biquad. 44 图3-26截止频率的配置方案示意图. 45 图3-27电阻电容阵列… 45 图3-28零极点不同的配对方式. ,46 图3-29 Biquad按Q值递增排列.... 47 图4-1使用片内电阻的V21电路... ..49 图4-2 Master--Slave校正的框图... .50 图4-3检测电阻电容偏差的电路原理图. 51 图4-4电阻电容偏差检测电路实现 .54 图4-5校正电路工作的流程图... .56 图4-6nbit二进制除法流程图..... ..56 图4-7V2I的反馈环路特性..… 57 图4-8电容充电过程的瞬态仿真… 58 图4-9滤波器在各工艺角下未校正的幅频响应. 59 图4-10滤波器在各工艺角下经过校正的幅频响应..... 59 图4-11V2在各工艺角下输出的电流基准......60 图4-12V21在各工艺角下校正后输出的电流基准.....… ..60 IV
IV 图 3-19 二阶低通滤波器添加零点后的幅频响应曲线....................................39 图 3-20 5 阶无源 LC 阶梯滤波器..................................................................40 图 3-21 无源 LC 网络综合得到的 5 阶有源滤波器........................................40 图 3-22 Biquad 级联的高阶滤波器...............................................................40 图 3-23 零中频数字电视接收机结构图 .........................................................41 图 3-24 Tow-Thomas Biquad 的一种结构 ....................................................42 图 3-25 差分形式的 Tow-Thomas Biquad ....................................................44 图 3-26 截止频率的配置方案示意图.............................................................45 图 3-27 电阻电容阵列 ..................................................................................45 图 3-28 零极点不同的配对方式....................................................................46 图 3-29 Biquad 按 Q 值递增排列..................................................................47 图 4-1 使用片内电阻的 V2I 电路 ..................................................................49 图 4-2 Master-Slave 校正的框图..................................................................50 图 4-3 检测电阻电容偏差的电路原理图........................................................51 图 4-4 电阻电容偏差检测电路实现...............................................................54 图 4-5 校正电路工作的流程图......................................................................56 图 4-6 n bit 二进制除法流程图 .....................................................................56 图 4-7 V2I 的反馈环路特性 ..........................................................................57 图 4-8 电容充电过程的瞬态仿真 ..................................................................58 图 4-9 滤波器在各工艺角下未校正的幅频响应.............................................59 图 4-10 滤波器在各工艺角下经过校正的幅频响应 .......................................59 图 4-11 V2I 在各工艺角下输出的电流基准 ...................................................60 图 4-12 V2I 在各工艺角下校正后输出的电流基准 ........................................60