Beijing Jiaotong niversityTnestitutcolEngincningMechanic能量法
Beijing Jiaotong University Institute of Engineering Mechanics 能量法
Beijing Jiaotong niversityTnstituteolEnginceningMechanics1.能量法:利用功和能的概念及能量守恒定律,求解可变形固体的位移、变形和内力等的方法。2.能量法的应用范围:(1)线弹性体,非线性弹性体;(2)静定问题,超静定问题;(3)是有限单元法的重要基础
Beijing Jiaotong University Institute of Engineering Mechanics 1.能量法: 利用功和能的概念及能量守恒定律,求解可变形固体的位移、 变形和内力等的方法。 2.能量法的应用范围: (1)线弹性体,非线性弹性体; (2)静定问题,超静定问题; (3)是有限单元法的重要基础
Beijing Jiaotong iversityTestetutcolEngiuceninMechasic·杆件应变能的计算·互等定理·卡氏定理·单位载荷法、莫尔积分·计算莫尔积分的图乘法
Beijing Jiaotong University Institute of Engineering Mechanics • 杆件应变能的计算 • 互等定理 • 卡氏定理 • 单位载荷法、莫尔积分 • 计算莫尔积分的图乘法
Beijing Jiaotong niversityT杆件应变能的计算InstitutcolEngiuceninsMechasics11、轴向拉压应变能FR1WP△L=1一22EAO(FN恒定)(x)dxFN!KAL:(FN变化)EA2EAPado=Vs=(℃08(应变能密度)2V, = Jvv,dv△1
Beijing Jiaotong University Institute of Engineering Mechanics ( ) 2 2 N l F x dx V EA ε = ∫ W = P∆L 2 1 EA F l L N ∆ = 2 2 F l N EA = 1、轴向拉压应变能 Vε = 杆件应变能的计算 l P ∆l (FN恒定) (FN变化) σ σ 0 v d ε ε = σ ε ∫ 1 2 = σε V V v ε ε = ∫ dV (应变能密度)
Beijing Jiaotong Mniversity杆件应变能的计算nstitutcolEngiuceningMechanics2、扭转应变能TT21=W/(T恒定)S22GIpTID(x)dxGI(T变化)2GIp(应变能密度)TY2-v.dVB8
Beijing Jiaotong University Institute of Engineering Mechanics 2 1 2 2 p T l VW T GI ε = = = ϕ p Tl GI 2 ϕ = ( ) l 2 p T x dx V GI ε = ∫ 2、扭转杆件应变能的计算 2、扭转应变能 1 2 = τγ 0 v d γ ε = τ γ ∫ V V v ε ε = ∫ dV τ τ (T恒定) (T变化) (应变能密度) T