决定Rml()的常微分方程定解问题 1 d/ d Rmi(r) nEor Rm1(0)有界R2m1(a)=0 Ba[()-() cos nd r<r R 27TEo m 11 2TEoml(a2
Green Function of Helmholtz Eq ... Green Functions for Time-Dependent Problems Separation of Variables Method of Images û½Rm1(r)~©§½)¯K h 1 r d dr r d dr − m2 r 2 i Rm1(r) = − δ(r − r 0 ) πε0r 0 cos mφ0 Rm1(0)k. Rm1(a) = 0 Rm1(r) = ( Am1 r a m r < r0 Bm1 hr a m − a r mi r > r0 Rm1(r) = (− 1 2πε0 1 m hrr0 a 2 m − r r 0 mi cos mφ0 r < r0 − 1 2πε0 1 m hrr0 a 2 m − r 0 r mi cos mφ0 r > r0 C. S. Wu 18ù Green¼ê()
决定Rm2()的常微分方程定解问题 1 dd rm2(r) 6(r-r) sin mo lEOr Rm2(0)有界R2m2(a)=0
Green Function of Helmholtz Eq ... Green Functions for Time-Dependent Problems Separation of Variables Method of Images û½Rm2(r)~©§½)¯K h 1 r d dr r d dr − m2 r 2 i Rm2(r) = − δ(r − r 0 ) πε0r 0 sin mφ0 Rm2(0)k. Rm2(a) = 0 Rm2(r) = ( Am2 r a m r < r0 Bm2 hr a m − a r mi r > r0 C. S. Wu 18ù Green¼ê()
决定Rm2()的常微分方程定解问题 1 dd rm2(r) 6(r-r) sin mo lEOr Rm2(0)有界R2m2(a)=0 n2 B
Green Function of Helmholtz Eq ... Green Functions for Time-Dependent Problems Separation of Variables Method of Images û½Rm2(r)~©§½)¯K h 1 r d dr r d dr − m2 r 2 i Rm2(r) = − δ(r − r 0 ) πε0r 0 sin mφ0 Rm2(0)k. Rm2(a) = 0 Rm2(r) = ( Am2 r a m r < r0 Bm2 hr a m − a r mi r > r0 C. S. Wu 18ù Green¼ê()
决定Rm2()的常微分方程定解问题 1 dd rm2(r) 6(r-r) sin mo lEOr Rm2(0)有界R2m2(a)=0 n2 B r+0 Rm2(7 drm2 ( 7)/m+0 11 0 sin mo
Green Function of Helmholtz Eq ... Green Functions for Time-Dependent Problems Separation of Variables Method of Images û½Rm2(r)~©§½)¯K h 1 r d dr r d dr − m2 r 2 i Rm2(r) = − δ(r − r 0 ) πε0r 0 sin mφ0 Rm2(0)k. Rm2(a) = 0 Rm2(r) = ( Am2 r a m r < r0 Bm2 hr a m − a r mi r > r0 Rm2(r) r 0+0 r 0−0 = 0 dRm2(r) dr r 0+0 r 0−0 = − 1 πε0 1 r 0 sin mφ0 C. S. Wu 18ù Green¼ê()
决定Rm2()的常微分方程定解问题 1 dd rm2(r) 6(r-r) sin mo lEOr Rm2(0)有界R2m2(a)=0 n2 Bn2[()-() sIn m nEon Bm? sin mo 2TTEo m a
Green Function of Helmholtz Eq ... Green Functions for Time-Dependent Problems Separation of Variables Method of Images û½Rm2(r)~©§½)¯K h 1 r d dr r d dr − m2 r 2 i Rm2(r) = − δ(r − r 0 ) πε0r 0 sin mφ0 Rm2(0)k. Rm2(a) = 0 Rm2(r) = ( Am2 r a m r < r0 Bm2 hr a m − a r mi r > r0 Am2 = − 1 2πε0 1 m r 0 a m − a r 0 m sin mφ0 Bm2 = − 1 2πε0 1 m r 0 a m sin mφ0 C. S. Wu 18ù Green¼ê()