im1n-nnn11(2)由+lim=1n+V2(n+/in+nn+1n+/nn-0n+nh与 lim可知=1,n->0n+ 111lim+n+/2(n+Vin→00n+yn(n+1)22n+22n+22n+2与(3)由2:可知2lim2,<Ln+1nn→>00n(nt1)212元lim=2.10(4)应用不等式2k>/(2k-1)(2k+),得到0<1=3.5*(2n-1)2.4.6...-(2n)V2n+11由 =0,可知limn-→002n+11-3.· ---(2n-- = 。lim2·4·6.-(2n)n→a9.求下列数列的极限:3n2 +4n-1n2+2n2-3n+1(1) lim(2) limn2 +12n2-n+30n元3" +n(4) lim (/n +1-1)sin2,(3) limm 3n+l +(n+1)3(5) lim Vn(/n+1- /n);(6) lim n(/n2 +1- /n+1);5(8) (-)(-)(1-);(7) lim /Vn!n-→o0+(10) lim /(9) lim /nlgn ;+2″16
limn→∞ 1 1 3 1 2 1 1 1 ⎟ = ⎠ ⎞ ⎜ ⎝ ⎛ + + + + n n " 。 (2)由 ⎜ ⎝ ⎛ + < + 1 1 n n n n + 1 n + 2 + . + 1 1 + <⎟ ⎟ ⎠ ⎞ + n n n n ,lim = 1 →∞ n + n n n 与 1 1 lim = →∞ n + n n ,可知 limn→∞ ⎜ ⎝ ⎛ + 1 1 n + 1 n + 2 + . + 1 1 =⎟ ⎟ ⎠ ⎞ n + n 。 (3)由 n n n k n n k n 1 2 2 1 2 2 2 2 2 ( 1) + < < + + = ∑ + = 与 2 2 2 lim = + →∞ n n n ,可知 limn→∞ ∑ + = 2 2 ( 1) 1 n k n k = 2。 (4)应用不等式2k > (2k −1)(2k +1) ,得到 2 1 1 2 4 6 (2 ) 1 3 5 (2 1) 0 + < ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ − < n n n " " , 由 0 2 1 1 lim = n→∞ n + ,可知 limn→∞ 0 2 4 6 (2 ) 1 3 5 (2 1) = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ − n n " " 。 9. 求下列数列的极限: ⑴ limn→∞ 3 4 1 2 2 n n n + − + 1 ; ⑵ limn→∞ n n n n n 3 2 3 2 3 2 3 + − + − + 1 ; ⑶ limn→∞ 3 3 1 3 1 3 n n n n + + + + ( ) ; ⑷ limn→∞ ( ) n si n n 2 1 1 2 + − π n ; ⑸ limn→∞ n n ( + − 1 n) ; ⑹ limn→∞ n n ( ) n 4 2 + −1 1 + ; ⑺ limn→∞ 1 n n ! ; ⑻ limn→∞ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ − 2 2 1 1 ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ − 2 3 1 1 . ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ − 2 1 1 n ; ⑼ limn→∞ lg n n n ; ⑽ limn→∞ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ − + + + n n 2 2 1 2 3 2 1 2 " 。 16
4.13 +3n2+4n-1n?n解(1)lim= lim=3。n2 +110n->001+3.11+2..n°+2n2-3n+1n?n31n(2)= limlim2n3-n+3213n→00n-→002-+n?n31+*3" +n33n1(3)limlim3m+l +(n +1)3100(n+1)3n-→003/1+3°+/<1,所以(4)因为lim/n2+1=1,Isin21→0nlim (°/n? +1 - 1)sin=0。2n→00Vn(5) lim Vn(n+1-n) = limlimn->00Vn+1+/n4nn[n2 +1-(n+1)](6) lim /n(/n2+1-/n+1)=lim10n- (/n?+1+/n+1)(n?+1+n+1)-2n/n= limn- (/n?+1+/n+1)(Vn?+1+n+1)-2= limn-00+1+=(4/1+111 1+11V(7)-80,所以limn→00n1lim n=0。n!(8)m(1()17
解(1)limn→∞ 3 4 1 →∞ = n lim 1 2 2 n n n + − + 3 1 1 4 1 3 2 2 = + + − n n n 。 (2)limn→∞ n n n n n 3 2 3 2 3 + 1 →∞ = n lim 2 3 + − − + 2 1 1 3 2 2 3 1 1 2 3 2 3 = − + + − + n n n n n 。 (3)limn→∞ 1 3 3 3 ( 1) 3 + + + + n n n n →∞ = n lim ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ + + + +1 3 3 3 ( 1) 3 1 3 1 n n n n 3 1 = 。 (4)因为limn→∞ 1 1 2 + = n n , | 1 2 |sin ≤ nπ ,所以 limn→∞ ( ) n sin n n 2 1 1 2 + − π = 0。 (5)limn→∞ n n ( ) + − 1 n →∞ = n lim = n + + n n 1 limn→∞ = + +1 1 1 1 n 2 1 。 (6)limn→∞ n n ( ) n 4 2 + −1 1 + ( 1 1)( 1 1) [ 1 ( 1) ] lim 4 2 2 2 2 + + + + + + + − + = →∞ n n n n n n n n ( 1 1)( 1 1) 2 lim 4 2 2 + + + + + + − = →∞ n n n n n n n = + + + + + + − = →∞ ) 1 1 1 )( 1 1 1 1 ( 1 2 lim 2 4 2 n n n n n 2 1 − 。 (7)limn→∞ 1 1 lg1 lg lg 2 n n + + + = −∞ " ,所以 limn→∞ n = n! 1 0。 (8)limn→∞ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ − 2 2 1 1 ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ − 2 3 1 1 . ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ − 2 1 1 n 17
= lim 1-3.2-4. 3.5.(n-2)n (n-1)(n+l)n+1_ 1limPn?→00224232(n-1)22nn-→a(9)1<nlgn,lim=1,所以lim /nlgn =1。1352n-1则2x,=1+号+号.2n-1(10)设两式文X:222232"22221-1112n-11由相减,得到x,=1+(1+2-22222"12n-111可知lim=0lim (1+)=2,2221-22n2n-0n-00,lim x, =3。n-o10.证明:若a,>0(n=1,2...),且lim~=1>1,则lima,=0。aaa+证取1<r<l,由lim=I>1,可知N,Vn>N,成立>r>1,于oanan+1。由liman0可知是0<an<ant0lima,=0。11.证明:若a,>0(n=1,2...),且limm则lima,=a。=a,n- an=α,可知E由,=......an及lim证aa2an-lanlimga,=a。12.设lim(a+az+.+a,)存在,证明:(1) lim =(a, +2a,+..+na,)=O;→n(2) lim (nlaa,.a,) =0 (a, >0, i= 1,2,,n)。18
→∞ = n lim = − + ⋅ − − ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 2 2 2 2 ( 1)( 1) ( 1) ( 2) 4 3 5 3 2 4 2 1 3 n n n n n n " limn→∞ = + n n 2 1 2 1 。 (9) 2 1 lg n n < n n < n ,limn→∞ 1 2 = n n ,所以 limn→∞ lg n n n = 1。 (10)设 n n n x 2 2 1 2 5 2 3 2 1 2 3 − = + + +"+ ,则 2 1 2 2 1 2 5 2 3 2 1 − − = + + + n n n x " ,两式 相减,得到 n n n n x 2 2 1 ) 2 1 2 1 2 1 1 (1 2 2 − = + + + + + − " − 。由 n→∞ lim ) 2 2 1 2 1 2 1 (1 2 2 + + + + = " n− , 0 2 2 1 lim = − →∞ n n n ,可知 lim = 3 →∞ n n x 。 10. 证明:若an > 0(n = 1,2,"),且lim 1 1 = > + →∞ l a a n n n ,则lim = 0。 →∞ n n a 证 取1 < r < l ,由lim 1 1 = > + →∞ l a a n n n ,可知∃N,∀n > N ,成立 1 1 > > + r a a n n ,于 是 1 1 1 0 − − + ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ < < n N n N r a a 。由 1 1 1 lim 0 n N N n a r − − + →∞ ⎧ ⎫ ⎪ ⎪ ⎛ ⎞ ⎨ ⎬ ⎜ ⎟ = ⎪ ⎪ ⎝ ⎠ ⎩ ⎭ 可知 lim = 0 →∞ n n a 。 11.证明:若an > 0(n = 1,2,"),且 a a a n n n = + →∞ 1 lim ,则 n an a n = →∞ lim 。 证 由 n n n n n a a a a a a a a 2 1 3 1 2 1 − = ⋅ ⋅ ⋅"⋅ 及 a a a n n n = + →∞ 1 lim ,可知 n an a n = →∞ lim 。 12. 设lim ( a a )存在,证明: n→∞ a 1 2 + +"+ n (1) limn→∞ 1 2 1 2 n a a nan ( ) + +"+ = 0; (2) limn→∞ ( ! n a a a ) n n ⋅ 1 2 1 " = 0 ( ai > 0 , i = 1,2,.,n)。 18
7二则由≥ka = ns,-Zs可知解(1)设a+az+...+a,=S,limS,=a,!二k=lkax=limS.- iml1Zsl=α-a=0.n.-lim=n-1台nk=ln-00nFn>o11(2)由0<(nlaja2.an)"≤(a,+2a,+..+na,)与(1),即得到n1lim (nl.aja2..a,)" =0。13.已知liman=a,limb,=b,证明: a,b, +a,b.-++..+a,b,lim=ab。nn->证令a,=a+αn,b=b+β,由lima,=a,limb,=b,可知limαn=0,limβ,=0。设VneN+,IB≤M。因为bzar*名+Zα Berk'ab, +a,b.-+++a,b =ab+ +-nn=lnk=i12[a β-兰ae,nknk=l1n-2(ax|=01n由 lim-及lim-lim -βk=0,得到Zαk=0,1nk=l-00nk=l00nk=la,b,+a,bu--+..+a,b,lim=ab。na, +a,+...+an14.设数列(a.3满足lim=a(-8<a<+)。证明:nan=0。lim7a +a2 +.+an--n-l.ai+a2+.+ar-l)=a,所以因为lim证limn-1n-→00nn→( +, an i+2+ -l) = 。an=lim (limnnn19
解(1)设a1 + a2 +"+ an = Sn,limn→∞ Sn = a ,则由 kak nS S 可知 k n n k n = = − ∑ ∑ = − 1 1 1 k limn→∞ ] 0 1 1 1 lim lim[ 1 1 1 1 = − = − ⋅ − ∑ = − ∑ − = →∞ →∞ = S a a n n n ka S n n k k n n n n k k 。 (2)由 n n a a an 1 1 2 0 < ( !⋅ " ) ( 2 ) 1 1 2 n a a na n ≤ + +"+ 与(1),即得到 limn→∞ ( ! n a a a ) n n ⋅ 1 2 1 " = 0。 13. 已知limn→∞ an = a ,limn→∞ bn = b,证明: limn→∞ a b a b a b n ab 1 2 n n + 1+ + n 1 = − " 。 证 令an = a +α n bn = b + β n , ,由limn→∞ an = a ,limn→∞ bn = b,可知limn→∞ α n = 0, limn→∞ β n = 0。设∀n ∈N +, β n ≤ M 。因为 = + + − + + ab n a1bn a2bn 1 " anb1 ∑ = n k k n b 1 α ∑ = + n k k n a 1 β ∑ = + − + n k k n k n 1 1 1 α β , ∑ = − + ≤ n k k n k n 1 1 | | 1 α β | | 1 ∑ = n k k n M α , 由 0 1 lim 1 ∑ = = →∞ n k k n n α , 0 1 lim 1 ∑ = = →∞ n k k n n α 及 0 1 lim 1 ∑ = = →∞ n k k n n β ,得到 limn→∞ a b a b a b n ab 1 2 n n + 1+ + n 1 = − " 。 14. 设数列{ an }满足limn→∞ a a a n 1 2 + +"+ n = a (−∞ <a<+ ∞) 。证明: limn→∞ a n n = 0。 证 因为 = + + + − →∞ n a a an n 1 2 1 lim " limn→∞ a n a a a n n n = − + + + ⋅ − − ) 1 1 ( 1 2 " 1 ,所以 limn→∞ a n n =limn→∞ n a1 + a2 +"+ an ( ) 0 1 2 1 = + + + − − n a a " an 。 19
习题2.3无穷大量1.按定义证明下述数列为无穷大量:2(1)>1) ;2n-(3) (n-arc tann);(4)Vn+2V2nVntln?+1证(1)VG>0,取N=[3G],当n>N时,成立>G22n+1(2)VG>0,取N=[a°],当n>N时,成立loga=log.n>G。n(3)vG>0,取N=[G+"],当n>N时,成立n-arctann>G。(4)VG>0,取N=[2G?],当n>N时,成立1n>G。Vn+22n2nVn+l2.(1)设lima,=+o(或-),按定义证明:a,+a,+..+anlim+0(或-00);n(2)设a,>0,lima,=0,利用(1)证明:1lim (aa,a,) =0。证(1)设lima,=+0,则G>0,3N,>0,Vn>N,:a,>3G。对固定的N,,a, +a, +..+an.G于是N>2N,Vn>Nn?a,+a,+..+an3G_G=G。aN,+I +aN,+2 +...+a,a+a2+...+an22n1na,+a,++a.同理可证当lima.==oo时,成立limn20
习 题 2.3 无穷大量 1. 按定义证明下述数列为无穷大量: (1) ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ + + 2 1 1 2 n n ; (2) ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ n a 1 log (a > 1); (3) { n − arc tan n }; (4) ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ + + + + n + n 2n 1 2 1 1 1 " 。 证(1)∀G > 0,取 N = [3G],当n > N 时,成立 G n n n > > + + 2 1 3 1 2 。 (2)∀G > 0,取 N = [aG ],当n > N 时,成立 n G n a ⎟ = a > ⎠ ⎞ ⎜ ⎝ ⎛ log 1 log 。 (3)∀G > 0,取 ] 2 [ π N = G + ,当n > N 时,成立 n − arctan n > G。 (4)∀G > 0,取 N = [2G2 ],当n > N 时,成立 G n n n n n + + > > + + + 2 2 1 2 1 1 1 " 。 2. (1) 设lim n→∞ an = +∞ (或− ∞ ),按定义证明: lim n→∞ a a a n 1 2 + +"+ n = +∞ (或− ∞ ); (2) 设a >0, = 0 ,利用(1)证明: n lim n→∞ an lim n→∞ (a a an n 1 2 1 " ) = 0。 证(1)设 = +∞,则 →∞ n n lim a ∀G > 0,∃N1 > 0,∀n > N1 : an > 3G 。对固定的 N1, 2 , : ∃N > N1 ∀n > N 2 1 1 2 G n a a aN < + +"+ ,于是 ≥ + + + n a1 a2 " an n aN +1 + aN +2 +"+ an 1 1 G G G n a a aN > − = + + + − 2 2 1 2 " 1 3 。 同理可证当lim 时,成立 n→∞ an = −∞ lim n→∞ a a a n 1 2 + +"+ n = −∞ 。 20