说明:(1)若积分区域既是X-型区域又是Y-型区域, 则有 J∬nfx,)drdy -d ol a b x 为计算方便,可选择积分序,必要时还可以交换积分序 (2)若积分域较复杂,可将它分成若干y X型域或Y-型域,则 川p=U+∬2+n HIGH EDUCATION PRESS 机动目 泉上页下页返回结束
o x y 说明: (1) 若积分区域既是X–型区域又是Y –型区域 , D f (x, y)dxdy 为计算方便,可选择积分序, 必要时还可以交换积分序. ( ) 2 y = x o x y D a b ( ) 1 x = y ( ) 2 x = y d c 则有 x ( ) 1 y = x y f x y y x x ( , )d ( ) ( ) 2 1 = b a d x f x y x y y ( , )d ( ) ( ) 2 1 = d c d y (2) 若积分域较复杂,可将它分成若干 D1 D2 D3 X-型域或Y-型域 , = + + D D1 D2 D3 则 机动 目录 上页 下页 返回 结束
例1.计算1=川Dxdo,其中D是直线y=1,x=2,及 y=x所围的闭区域 解法1.将D看作K型区域则D:Sy≤ 1≤x≤2 I-Pdxddx =[x2-x]x=8 解法2.将D看作Y型区域,则D: 「y≤x≤2 1≤y≤2 1=dx-7-2-8 HIGH EDUCATION PRESS 机动目录上页下页返回结束
x y 2 1 1 y = x o 2 = 2 1 dy 例1. 计算 d , = D I xy 其中D 是直线 y=1, x=2, 及 y=x 所围的闭区域. x 解法1. 将D看作X–型区域, 则 D : I = 2 1 d x xyd y = 2 1 d x = − 2 1 2 3 1 2 1 x x dx 8 9 = 1 2 2 1 x xy 解法2. 将D看作Y–型区域, 则 D : I = xyd x 2 1 d y y x y 2 2 2 1 = − 2 1 3 2 1 2y y dy 8 9 = y 1 x y 2 1 y x 1 x 2 y x 2 1 y 2 机动 目录 上页 下页 返回 结束
例3.计算 八Dxdσ,其中D是抛物线y2=x及直线 y=x-2所围成的闭区域, 解:为计算简便,先对x后对y积分 则 y=X-2 JdG-Ldpdx =Lx2]2a=0+22-y1ay 3-22- HIGH EDUCATION PRESS 机动目录上页 下页返回结束
例3. 计算 d , D xy 其中D 是抛物线 所围成的闭区域. 解: 为计算简便, 先对 x 后对 y 积分, D : xy d x D xyd − = 2 1 dy − + = 2 1 2 2 2 1 x y 2 dy y y − = + − 2 1 2 5 [ ( 2) ] d 2 1 y y y y D y = x 2 y = x − 2 2 −1 4 o y x y 2 2 y x y + −1 y 2 2 y y + 2 及直线 则 机动 目录 上页 下页 返回 结束