sinx)=cosx (cosx =-sin x (tan x)=sec x(cot x)=-csc'x (sec x)=sec x tanx G(cscx)'=-cscxcotx (arcsin x) (arccos x) (arctan x) 1+x (arc cotx)= 1+x
6 (sin ) cos x x ′ = (cos ) sin x x ′ = − 2 (tan ) sec x x ′ = 2 (cot ) csc x x ′ = − (sec ) sec tan x xx ′ = ⋅ (csc ) csc cot x xx ′ =− ⋅ 2 1 (arcsin ) 1 x x ′ = − 2 1 (arccos ) 1 x x ′ = − − 2 1 (arctan ) 1 x x ′ = + 2 1 ( cot ) 1 arc x x ′ = − +
二、函数四则运算的求导法则 如果函数u=l(x)与v=v(x)都是x的可导函数 则 (1)(a±)='±→有限个函数和差的情况 (2)(n·v)=a'v+uv 当v(x)=c(常数),有(cn) ch n’p-u (3)() (p≠0) 当u(x)=1,有(、p (V≠ b(1)y=3x 2 x+ 4In2 y=(3x2)-(2log2x)+(4l2) =3·2x-2 +0 xIn2 6x In 2
7 二、函数四则运算的求导法则 如果函数 与 都是 的可导函数 u ux v v = = () () x x (u ± v)′ = u′ ± v′ → 有限个函数和差的情况 (u ⋅ v)′ = u′v + uv′ 当 常数 , vx c ( ) ( ) = 有 ( ) cu cu ′ = ′ ( ) 2 ( ≠ 0) ′ − ′ ′ = v v u v uv v u 2 1 ( ) 1 ( 0) () v v v ux v ′ 当 ,有 = ′ = − ≠ 则: (1) (2) (3) 例(1) 2 2 yx x =− + 3 2log 4ln2 2 2 y ′ =− + (3 ) (2log ) (4ln 2) x x ′ ′ ′ 3 2 1 2 l 2 0 n x x =⋅ −⋅ + 2 6 ln 2 x x = −
(2)y=3c0sx·lnx y=3(c0sx·Inx) 3(cos x). Inx+ cos x (Inx) = 3-sin x In x+cosx (3)y= 1+x (2-x)(1+x2)-(2-x)(1+ J (1+x2) (1+x2)-(2-x)·2x (1+x2)2 4x-1 (1+x2)2
8 (2) y xx = ⋅ 3cos ln y ′ = ⋅ 3(cos ln ) x x ′ = ⋅+ 3[ ln cos ] (cos ) (ln ) x x ′ x x ⋅ ′ ] 1 3[ sin ln cos x = − x ⋅ x + x ⋅ 2 1 2 x x y + − = 2 2 2 2 (2 ) (1 (1 ) (2 ) ) ) (1 x x x x y x ′ + − ′ ′ + − = − + 2 2 2 (1 ) (1 ) (2 ) 2 x x x x + − + − − ⋅ = 2 2 2 (1 ) 4 1 x x x + − − = (3)
三、复合函数的求导法则 如果函数n=g(x)在点x处有导数=q(x) 函数y=f()在对应点a处有导数y=f(a) 则复合函数y=f(q(x)在点x处也可导,且 =以或咖。dm dh 例:求下列函数的导数 (1)y=sin 3 x i y=sinu, u=3x y'=cos 3x(3x)=3 cos 3x (2)y=sin'x iy=u',u=sinx y=3sin x (sin x =3sinxcosx
9 三、复合函数的求导法则 () () ( ) ( ( ( )) ) x u ux x y fu u x u y fu yf x x ϕ ϕ ϕ = = = ′ = ′ ′ = ′ 如果函数 在点 处有导数 , 函数 在对应点 处有导数 , 则复合函数 在点 处也可导,且 x ux dy dy du y yu dx du dx ′ ′′ =⋅ = ⋅ 或 例:求下列函数的导数 y = sin 3x 设 , y = sin 3 uu x = y xx ′ ′ = cos3 (3 ) ⋅ = 3cos 3x (1) y x 3 = sin 3 设 , yuu x = = sin 2 y xx ′ ′ = ⋅ 3sin (sin ) 3sin x cos x 2 = ⋅ (2)
例:求下列函数的导数 (1)y=(4x-5) (可根据复合函数求导法则直接由外向里逐层求导) y'=(4x-5)y 004x-5)·(4x-5) =4004x-5) (2) y=Insect y=(Insecx) (secx sec Secy·tanx sec tanx
10 例:求下列函数的导数 100 y = (4x − 5) ( ) 可根据复合函数求导法则,直接由外向里逐层求导 100 y ′ = − [(4 5) ] x ′ 100(4 5) (4 5) 99 = x − ⋅ x − ′ 99 = 400(4x − 5) (1) y = lnsec x y x ′ = (ln ) s ce ′ 1 (sec s ) ec x x = ⋅ ′ x x x sec tan sec 1 = ⋅ ⋅ (2) = tan x