忌数的概念 在许多实际问题中,需要从数量上研究变量的 变化速度。如物体的运动速度,电流强度,线密 度,比热,化学反应速度及生物繁殖率等,所有 这些在数学上都可归结为函数的变化率问题,即导数。 本章将通过对实际问题的分析,引出微分学中两个最重要的基本概念导数与微分,然后再建立求导数与微分的运算公式和法则,从而解决 有关变化率的计算问题
文件格式: PPT大小: 587KB页数: 57
初等函数微分法 求导数的方法称为微分法。用定义只能求出 一些较简单的函数的导数(常函数、幂函数、 正、余弦函数、指数函数、对数函数),对于 比较复杂的函数则往往很困难。本节我们就来建立求导数的基本公式和基本法则,借助于这些公式和法则就能比较方便地求出常见的函数初等函数的导数,从而是初等函数的求导问题系统化,简单化
文件格式: PPT大小: 788KB页数: 35
函数的微分 前面我们从变化率问题引出了导数概念,它是微分学的一个重要概念。在工程技术中,还会遇到与导数密切相关的另一类问题,这就是当自变量有一个微小的增量时,要求计算函数的相应的增量。一般来说,计算函数增量的准确值是比较繁难的,所以需要考虑用简便的计算方法来计算它的近似值。由此引出了微分学的另一个基本概念微分
文件格式: PPT大小: 510KB页数: 24
一、主要内容 二重积分的计算方法是累次积分法,化二重 积分为累次积分的步骤是: ①作出积分区域的草图 ②选择适当的坐标系 ③选定积分次序,定出积分限 1。关于坐标系的选择 这要从积分区域的形状和被积函数的特点 两个方面来考虑
文件格式: PPT大小: 567KB页数: 27
重积分的应用 把定积分的元素法推广到二重积分的应用中 若要计算的某个量U对于闭区域D具有可加性 (即当闭区域D分成许多小闭区域时,所求量U相应 地分成许多部分量,且U等于部分量之和),并且 在闭区域D内任取一个直径很小的闭区域do时, 相应地部分量可近似地表示为f(x,y)do的形式, 其中(x,y)在do内.这个f(x,y)do称为所求量U 的元素,记为dU,所求量的积分表达式为
文件格式: PPT大小: 569.5KB页数: 30
在柱坐标系和蹴坐标系下的计算 一、在柱坐标系下的计算法
文件格式: PPT大小: 445KB页数: 26
三重积分及其计算 一、三重积分的概念 将二重积分定义中的积分区域 推广到空间区域,被积函数推广到三元函数,就得到三重积分的定义
文件格式: PPT大小: 579KB页数: 25
二重积分的计算法(2) 一、利用极坐标系计算二重积分
文件格式: PPT大小: 599KB页数: 19
二重积分的计算法(1) 一、利用直角坐标系计算二重积分 如果积分区域为:a≤x≤b,1(x)≤y≤2(x)
文件格式: PPT大小: 714KB页数: 25
二重积分的概念和性质 在一元函数积分学中,我们已经知道,定积分是定义在某一区间上的一元函数的某种特定形式的和式的极限,由于科学技术和生产实践的发 展,需要计算空间形体的体积、曲面的面积、空 间物体的质量、重心、转动惯量等,定积分已经不能解决这类问题,另一方面,从数学逻辑思维 的规律出发,必然会考虑定积分概念的推广,从而提出了多元函数的积分学问题
文件格式: PPT大小: 747.5KB页数: 29










