一、主要内容 1、罗尔中值定理 2、拉格朗日中值定理 3、柯西中值定理 4、洛必达法则
文件格式: PPT大小: 571KB页数: 38
L. Hospital法则 在第一章中我们已经知道,当分子分母都是无穷小或都是无穷大时,两个函数之比的极限可能存在也可能不存在,即使极限存在也不能用“商的极限等于极限的商”这一运算法则。这种极限称为未定式 本节我们就利用 Cauchy中值定理来建立求未定式极限的 L Hospital法则,利用这一法则,可以直接求和这两种基本未定式的极限,也可间接求出
文件格式: PPT大小: 316KB页数: 25
最大值、最小值问题 在生产实践中,为了提高经济效益,必须要 考虑在一定的条件下,怎样才能是2用料最省, 费用最低,效率最高,收益最大等问题。这类问 题在数学上统统归结为求函数的最大值或最小值 问题。最值问题主要讨论问题的两个方面:最值 的存在性;最值的求法
文件格式: PPT大小: 548KB页数: 16
曲线的凹凸与拐点 前面我们介绍了函数的单调性和极值,这对于 了解函数的性态很有帮助,但仅知道单调性还不能比较全面地反映出曲线的性状,还须要考虑弯曲方向
文件格式: PPT大小: 597.5KB页数: 20
单调性及其判定 Lagrange定理4y=f'(x+0x).4x给出了 函数在某区间上的增量与函数在区间内某点处的 导数之间的关系,为利用导数反过来研究函数的 性质或曲线的形态提供了一座桥梁。本节我们就 来讨论这方面的问题,主要介绍:单调性、极值 最值、凹凸、拐点和曲率
文件格式: PPT大小: 395KB页数: 18
中值定理 第二章我们讨论了微分法,解决了曲线的切线、 法线及有关变化率问题。这一章我们来讨论导数的 应用问题。 我们知道,函数y=f(x)在区间 上的增量4y=f(xo+x)-f(x)可用它的微分 dy=f(x)4x来近似计算其误差是比x 高阶的无穷小
文件格式: PPT大小: 719.5KB页数: 43
曲率 前面讲了单调性、极值、最值、凹凸性。 我们知道凹凸性反映的是曲线的弯曲方向,但是朝同一方向弯曲的两条曲线,其弯曲的程度也不尽相同。曲率就是表征弯曲程度的量,它等于单位路程上方向(角度切线的倾斜角 )的改变量
文件格式: PPT大小: 422KB页数: 20
函数的极值及其求法 由单调性的判定法则,结合函数的图形可知, 曲线在升、降转折点处形成“峰”、“谷”,函 数在这些点处的函数值大于或小于两侧附近各点处的函数值。函数的这种性态以及这种点,无论在理论上还是在实际应用上都具有重要的意义, 值得我们作一般性的讨论
文件格式: PPT大小: 444.5KB页数: 23
函数图形的描绘 一、渐近线 定义:当曲线y=f(x)上的一动点P沿着曲线 移向无穷点时如果点P到某定直线L的距离趋向于零,那么直线L就称为曲线y=f(x)的 一条渐近线 . 1.铅直渐近线(垂直于x轴的渐近线
文件格式: PPT大小: 484KB页数: 21
Tavlor公式 多项式是一类很重要的函数,其明显特点是结构 简单,因此无论是数值计算还是理论分析都比较方便 从计算的角度看,只须加、减、乘三种运算,连除法 都不需要,这是其它函数所不具备的优点。 用多项式近似地表示给定函数的问题不仅具有实 用价值,而且更具有理论价值。一般的函数不好处理 先用较好处理的多项式近似替代,然后通过某种极限 手续再过渡到一般的函数
文件格式: PPT大小: 969.5KB页数: 47
©2025 mall.hezhiquan.com 和泉文库
帮助反馈侵权