设矩阵A∈Rn,如果存在数入∈C及非零向量x∈C满足方程 Ax∈x,则称λ为矩阵A的一个特征值,称为矩阵A的相应于特 征值λ的特征向量。为简单起见,下称,x为矩阵A的一特征对。 特征值的计算,直接从特征方程()=det-A)=0出发会遇到很 大困难,当n稍大一些,行列式展开本身就很不容易,随后是高次代数 方程求解。因此,矩阵特征值的求解,主要是数值解法
文件格式: PPT大小: 1.15MB页数: 63
在工程和科学计算中,所建立的各 种常微分方程的初值或边值问题,除很 少几类的特殊方程能给出解析解,绝大 多数的方程是很难甚至不可能给出解析 解的,其主要原因在于积分工具的局限 性。因此,人们转向用数值方法去解常 微分方程,并获得相当大的成功,讨论 和研究常微分方程的数值解法是有重要 意义的
文件格式: PPT大小: 639KB页数: 76
略去余式R[f],由定理5.1.2知,它如果是插值型求积公式,则至少有n次代数精度
文件格式: PPT大小: 1.4MB页数: 67
在数学分析中,我们学习过微积分基 本定理 Newton-Leibniz-公式: f(x)dx=fx)=fb)-f(a)5.0.1) 其中,F(x)是被积函数f(x)的原函数。 随着学习的不断深化,发现Newton- Leibniz公式有很大的局限性
文件格式: PPT大小: 687.5KB页数: 75
前面我们根据区间[ab]上给出的节点做 插值多项式Ln(x)近似表示f(x)。一般总 以为Ln(x)的次数越高,逼近f(x)的精度 越好,但实际并非如此,次数越高,计 算量越大,也不一定收敛。因此高次插 值一般要慎用,实际上较多采用分段低 次插值
文件格式: PPT大小: 409KB页数: 69
2)式代入(1)式得:+(x-x)(x-x)f[x,x,x](3)为了提高精度,增加节点x2,则
文件格式: PPT大小: 889KB页数: 54
4.1 Lagrange插值法 4.2 Newton插值法
文件格式: PPT大小: 627.5KB页数: 50
为了研究线性方程组近似解的误差估计 和迭代法的收敛性,我们需要对R(n维 向量空间)中的向量或R∞中矩阵的“大 小”引入一种度量,—一向量和矩阵的范 数
文件格式: PPT大小: 425KB页数: 73
我们知道对矩阵进行一次初等变换,就相 当于用相应的初等矩阵去左乘原来的矩阵。 因此我们这个观点来考察Gaus消元法用 矩阵乘法来表示,即可得到求解线性方程 组的另一种直接法:矩阵的三角分解
文件格式: PPT大小: 293.5KB页数: 64
南京大学计算机科学与技术系:《数值计算方法》课程教学资源(PPT课件)第3章 解线性方程组的数值解法 3.1 高斯消元法
文件格式: PPT大小: 597.5KB页数: 53