1:若方程y+p(x)y=0的一个特解为y=cos2x则该方程满足初值条件y(0)=2的 特解为() A cos 2x+2 B cos 2x+1 C2 coS x cos 2X 答案D 解:将y=cos2x代入方程求出函数p(x)再求解方程得到正确答案为D.也可以作 如下分析一阶线性齐次方程 y+p(x)y=0任意两个解只差一个常数因子所以A,B,C三个选项都不是该方程的解 2微分方程“卫
文件格式: DOC大小: 384KB页数: 8
第六章常微分方程 6-4线性微分方程组 6-4-1微分方程组解的一般概念 6-4-2线性方程组解的结构 6-4-3线性常系数方程组的解 (1)期终考试时间: 六月三十日星期一下午2:30---4:30 (2)答疑时间:6月27(星期五)、6月28日(星期六)上、下午 6月30日(星期一)上午 上午8:300——11:00;下午3:005:00 答疑地点:三教1106 (3)考试教室分配:
文件格式: DOC大小: 372KB页数: 7
第六章常微分方程 6-3高阶线性方程 6-3-1高阶线性常系数方程的解 6-3-2 Euler方程 第二十三讲高阶线性常系数阶线性方程 6-3-1高阶线性常系数齐次方程的解 考察n阶线性常系数齐次方程 d x dx d +am+.+ax=o dr dt d t 其中a1,an为实常数 或记成 L(Dx=o 由上一段的讨论知道方程L(Dx=0在区间(-∞,+∞)有n个线性无关解
文件格式: DOC大小: 586KB页数: 9
第六章常微分方程 6-2高阶线性方程 6-2-1线性方程解的结构 6-2-2高阶线性常系数方程的解 6-2-3 Euler方程 第二十二讲高阶线性方程(一) 课后作业: 阅读:第六章6-1pp.189194 预习:第六章6-2pp.194199 作业题:p.199习题21,(2),(4);2;3,(2) 引言: n阶线性微分方程的一般形式为
文件格式: DOC大小: 301.5KB页数: 6
第六章常微分方程 附加条件 y(a)=yu,y(b)=y2 称为边值条件( boundary condition) 满足微分方程,并且适合定解条件的解称为微分方程的特解 (special solution) 微分方程的存在唯一性定理 存在唯一性定理:对一阶初值问题:=f(xy ,若二元函数 y(x0) f(x,y)在矩形D={(x,y):x-x0Ay-y0B}连续, 且偏导数(xy存在并有界则存在正数h,使得上述初值问题 在区间[x。-h,x+h上存在有唯一的解 证明思路:
文件格式: DOC大小: 389.5KB页数: 7
第六章不定积分 6-2不定积分方法 6-2-1变量置换法 凑微分法是通过局部的积分,即a(x)ldx=dh(x),将欲求的积分 ∫/(x)向己有的积分公式f'x)(x)=F((x)+c转化 是实际上是作了一个变量置换:u=l(x),将 f(xdx= F(u(x))u(x)dx= F(u)du 如果凑微分目标不明,亦可先用变量置换先化简被积分式子,即 引进新的自变量x=(1),将积分 f(x)dx= f((O)'(o)dr 如果能够求出函数f(()(口)的原函数G(1),并且反函数 t=g-(x)存在,于是就得到不定积分 f(x)dx= f(o(D))o'(o)dt=G(o(x)+c
文件格式: DOC大小: 590.5KB页数: 15
第六章不定积分 CThe indefinite integration 6-1原函数和不定积分 6-1-1原函数概念及性质 6-1-2不定积分概念及性质 5-1-3基本积分表及凑微分法 6-2不定积分方法 6-21变量置换法 6-2-2分部积分法 63有理函数的积分 6-3-1最简分式的积分 6-3-2有理函数的积分 6-4其他可积成有限形式的函数类 6-4-1三角有理式的积分 第十四讲原函数及不定积分 课后作业: 阅读:第六章61:pp206-210;6.2:p2ll-214 预习:第六章62:pp214-216;63:pp218-22:6.4:pp224-230 练习pp.210-21:2习题61 复习题全部;习题1;2;3(1)-(8)
文件格式: DOC大小: 503.5KB页数: 8
第七章定积分 The definite integration 习题讨论 题目: ayx-b 1,计算1= -dx. (x-b)2+a2 2,计算m=(n)dx,其中n,m为自然数。 0 3,计算J=1 --dx,其中x是x的整数部分。 sinx sinx 4,一研究1= (+,= dx,p>0的敛散性 +sinx 解答: aypx-b
文件格式: DOC大小: 185KB页数: 3
第六章定积分 (The definite integration) 第十六讲定积分的计算方法 课后作业: 阅读:第六章6.4,6.5,6.6:pp16--193 预习:第七章7.1,7.2,7.3:pp9--210. 练习pp.182-184:习题6.4:1;2;3,7,8中的单数序号小题;11; 17;20 p.16-188习6.5:12;3,中的单数序号小题;4;6; 8;9;11;24;26;27 作业pp.182-184:习题6.4:3,中的双数序号小题;5;6; 7,(6),(8),(10);8,(2),(4);9;10;1516;18;21 1720
文件格式: DOC大小: 377.5KB页数: 8
第六章定积分 (The definite integration) 第十五讲 Newton-Leibniz-公式与定积分的计算 课后作业: 阅读:第六章6.:pp6--17 预习:6.4,6.5,6:p176-19 练习pp174176习题6.3:1,7,8中的单数序号小题 作业pp.174176:习题6.3:1,(2),(6)2,(2)4;5;7,(4^,(6),(10) (1)8(,114;1;1720 6-3牛顿(Newton)一莱布尼兹(Leibnitz)公式 6-3-1变上限定积分 (一)变上限积分 设f∈Ra,b,x∈[a,b],F(x)=f(t)dt是定义在[a,b]上 a 的一个函数,称之为变上限积分 这里有一个十分重要的结果:变上限积分总是连续函数
文件格式: DOC大小: 307.5KB页数: 6
©2025 mall.hezhiquan.com 和泉文库
帮助反馈侵权