第三讲函数的连续性 (The Continuity of function 阅读:第二章2.4pp44-5 预习:第三章31pp.51-58, 练习pp49-50习题24:1至8;9,(),(2),(3;10,(1),(3);14;15. 作业pp49-50习题24:9,(4);10,(2);11;12;13. 24函数连续的定义及其性质 2-4-1函数连续性的定义 (1)定义: 函数的连续性描述函数y=f(x)的渐变性态,在通常意义下,我们对 函数连续性有三种描述
文件格式: DOC大小: 355.5KB页数: 6
第二章极限论 第三讲函数的连续性 (The Continuity of function) 阅读:第二章2.4pp.4450, 预习:第三章3.1pp.51—58, 练习pp49--50习题2.4:1至8;9,(1),(2),(3)10,(1),(3);14;15 作业pp49-50习题2.4:9,(4);10,(2)11:12:13 2-4函数连续的定义及其性质 2-4-1函数连续性的定义 (1)定义: 函数的连续性描述函数y=f(x)的渐变性态在通常意义下,我们对 函数连续性有三种描述:
文件格式: DOC大小: 369KB页数: 6
第二章极限论 第二讲极限(二) 阅读:第二章2.3pp.4043 预习:第二章2.4pp.4450 练习pp43--44习题2.3:1至810;12,(2),(4),()(8)9,12)(14) 作业pp43--44习题2.3:91112,(1),(3,(5)(7((1)(13)(15) 班级
文件格式: DOC大小: 295KB页数: 5
阅读:第二章21-2.2pp,27-39 预习:第二章23-24p4050 练习pp34-35习题21:1;2 pp39-40习题22:1.、1),(2),(3);2.(1),(6),(10)(11),(14); 3.(2);4.(1). 作业pp34-35习题21:1;2 pp39-40习题22:1.(4),⑤5),(6);2(3),(4),(7),(8),(9)(12),(13); 3.(1);4.(2 引言: 1,极限的发展 由方法到概念: 从求切线求速度到导数概念; 从的求曲边面积到定积分概念
文件格式: DOC大小: 291KB页数: 6
第一讲函数概念 课后作业: 阅读:第一章1.1--..1—25, 自学: 练习 作业pp3-4习题1.1:2;7 pp7-8习题1.2:1.(3),(4)3.(3),(4);4;7;8 pp12习题1.3:59;11 pp19-20习题1.4:1. pp25-26习题1.5:1.(2),(11)2.(6);3.(2)5.(1)
文件格式: DOC大小: 302KB页数: 3
[填空题] 1.微分方程y+ytanx-cosx=0的通解为y=(x+)cosx 2.过点(,0)且满足关系式yarcsin+y=1的曲线方程为 x 1 yarcsinx=x- C 3.微分方程xy+3y=0的通解为y=C1+2 x 4.设y1(x),y2(x),y3(x)是线性微分方程y\+ax)y+b(x)y=f(x)的三个特解,且 y2(x)-y1(x)+C,则该微分方程的通解为 y3(x)-y(x) y=C1(y2(x)-y1(x))+2((y3(x)-y1(x)+y1(x)。 5.设y1=3+x2,y2=3+x2+e-是某二阶线性非齐次微分方程的两个特解,且相应齐
文件格式: DOC大小: 831.5KB页数: 16
[填空题] 1.数项级数 1 的和为一。 (2n-1)(2n+1) 2 2.数项级数(-1) 的和为cosl。 n=(2n)! 注:求数项级数的和常用的有两种方法,一种是用和的定义,求部分和极限;另一种 是将数项级数看成是一个函数项级数在某点取值时的情况,求函数项级数的和函数在此点 的值。 3.设an>0,p>1,且lim(n(en-1)an)=1,若级数∑an收敛,则p的取值范围是 n→∞ n= (2,+∞)。 1 分析:因为在n→∞时,(en-1)与是等价无穷小量,所以由 n lim(n(en-1)an)=1可知,当n→∞时,an与是等价无穷小量由因为级数 n→ an收敛,故 -1收敛,因此p>2 n 4.幂级数an(x-1)在处x=2条件收敛,则其收敛域为[0,2] 分析:根据收敛半径的定义,x=2是收敛区间的端点,所以收敛半径为1。由因为在
文件格式: DOC大小: 979KB页数: 20
1.设曲线L是上半圆周x2+y2=2x,则xdl=π L 解法1由于L关于直线x=1对称,所以∫(x-1)dl=0,从而 L xdl=f[(x-1)+1l=f(x-1)dl+fdl=0+π=π L L L =1+ cost, 解法2令L:y=sint (0≤t≤),则 xdl =Jo (+cost)(-sint)2+(cost)dt=. L 解法3设曲线L的质量分布均匀,则其重心的横坐标为x=1又因为 ∫xdl xdl x= d 1么 π 所以∫xdl=π。 L 2.设L是上半椭圆周x2+4y2=1,y≥0,是四分之一椭圆周 x2+4y2=1,x≥0,y≥0,则 (A)(+ y) (+y) (B) Ixydl =2J, xydl () SLx2dl, y2dl (D)(x+y)2dl =2J (x2+y2) [] 答D
文件格式: DOC大小: 1.82MB页数: 40
选择题] 容易题1-36,中等题37-87,难题88-99。 x+3y+2z+1=0 1.设有直线L 及平面x:4x-2 2=0,则直线L 2x-y-10+3=0 (A)平行于丌。(B)在上丌。(C)垂直于x。(D)与丌斜交 2.二元函数∫(x,y)= (x.(09在点0处() (x,y)=(0,0) (A)连续,偏导数存在 (B)连续,偏导数不存在 (C)不连续,偏导数存在 (D)不连续,偏导数不存在 设函数n=Mx9)1=x由方程组{=2+”。确定,则当n一时, y=u +l (C)-l (D) 答:B
文件格式: DOC大小: 1.37MB页数: 27
选择题] 容易题1—36,中等题37—86,难题87117 1.积分中值定理f(x)dx=f(5)(b-a),其中()。 (A)ξ是[a,b内任一点 (B).5是[a,b]内必定存在的某一点 (C).5是[a,b]内唯一的某一点 (D).5是[a,b]的中点。 答B (t)dt 2.F(x)={0 x2,x≠0,其中f(x)在x=0处连续,且f(0)=0若F(x)在 c,x=0 x=0处连续,则c=() (A).c=0; (B).c=1; (C).c不存在; (D).c=-1. 答A
文件格式: DOC大小: 1.21MB页数: 30