¢(t)1=SF(S)-f(0) dt 推广:L=SSF(S)-f(0)f(0) S2F(S)-Sf(0)-f(0) L1(1=S"F(s)-s"1f(0)-sn2f(0
推广: ] ( ) [ 2 2 dt d f t L [ ( ) (0 )] (0 ) − − = S SF S − f − f ( ) (0 ) (0 ) 2 − − = S F S − Sf − f ] ( ) [ n n dt d f t L (0 ) ( ) (0 ) (0 ) ( 1) 1 2 − − − − − − − − = − − n n n n f S F S S f S f ] ( ) (0 ) ( ) [ = SF S − f − dt df t L
2频域导数性质 设:Lf()=F(S) 则:L-f( dF(S) 证:「f(t)e"dt=「f()(-t)eat =|-4() 推广:Lr"f()]=(-1) d F(S)
2.频域导数性质 dS dF S L tf t ( ) 则: [− ( )] = − 0− f (t)e dt ds 证:d st − − = − 0 f (t)( t)e dt s t = L[−tf (t)] 设:L[ f (t)] = F(S) n n n n dS d F S L t f t ( ) 推广: [ ( )] = (−1)
L-(y=4(s) ds 例1:Lt(t)= ds s 例2:Lt"E(t)=(-1) n) n+1 d 1 例3:Lte]=-( 2 ds s+a s+a)
) 1 ( dS S d 例1:L[t(t)] = − dS dF S L tf t ( ) [− ( )] = 2 1 S = ) 1 ( 1) ( ( ) ( ) dS S d n n n 2 L[t (t)] = − n 例 : 1 ! + = n S n ) 1 ( dS S a d + = − − 3 [ ] at 例 :L te 2 ( ) 1 S + a =
积分性质 设:Lf()=F(S) 则:LDf()=F(S) 证:fO=mmf()m LIf(=LIa Jo. f(t)drI F(S)=SLIS f(dr]-5o' f(dreo LI f(t)dt =F(S)
三、积分性质 ( ) 1 [ ( ) ] 0 F S S L f t dt t = − 则: [ ( )] [ ( ) ] 0 − = t f t dt dt d L f t L F(S) − − − = − =0 0 0 [ ( ) ] ( ) t t t sL f t dt f t dt = − t f t dt dt d f t 0 证 : ( ) ( ) 设 :L[ f (t)] = F(S) ( ) 1 [ ( ) ] 0 F S S L f t dt t = −
例13-4利用积分性质求函数f(t)=t的象函数。 解:由于()=t=1(5)d5 Lf=L26(5)d引l|=Lm/1 2 推广:Lt]=-3 .t<=2 tdt L[t']=L[2 tdt=2L[t]2 推广:Lt"l= n+1
0 2 0 1 [ ( )] 1 [ ( )] [ ( ) ] ( ) ( ) 13 4 ( ) s L t s L f t L d f t t d f t t t t = = = = = − = 解:由于 例 利用积分性质求函数 的象函数。 3 2 2 [ ] s 推广:L t = = t t tdt 0 2 2 0 3 2 [ ] 2 [ ] [2 ] 2 s s L t L t L tdt t = = = 1 ! [ ] + = n n s n 推广:L t