高等院校非数学类本科数学课程 大学数学(一) 一元微积分学 第一讲集合与映射 脚本编写、教案制作:刘楚中彭亚新邓爱珍刘开宇孟益民
高等院校非数学类本科数学课程 —— 一元微积分学 大 学 数 学(一) 第一讲 集合与映射 脚本编写、教案制作:刘楚中 彭亚新 邓爱珍 刘开宇 孟益民
第一章集合与函数 本章学习要求: 正确理解函数概念,能熟练求出函数的定义域。 掌握函数的单调性、有界性、奇偶性、周期性的 分析表示和图形特征。 正确理解初等函数、复合函数概念,能正确将复 合函数进行分解。 会求函数(包括分段函数)的反函数 了解“取整函数”和“符号函数” 能对常见的实际问题进行分析,建立函数关系
第一章 集合与函数 本章学习要求: ▪ 正确理解函数概念,能熟练求出函数的定义域。 ▪ 掌握函数的单调性、有界性、奇偶性、周期性的 分析表示和图形特征。 ▪ 正确理解初等函数、复合函数概念,能正确将复 合函数进行分解。 ▪ 会求函数(包括分段函数)的反函数。 ▪ 了解“取整函数”和“符号函数”。 ▪ 能对常见的实际问题进行分析,建立函数关系
第一节集合与映射 集合的基本概念 二、集合的基本运算 三、映射的基本概念 四、实数、区间、邻域
第一节 集合与映射 一、集合的基本概念 二、集合的基本运算 三、映射的基本概念 四、实数、区间、邻域
集合的基本概念 集合论是现代数学的基础。集合论的创始人是丹麦人 康托尔(犹太人),他在柏林大学学习(工科)期间受大 数学家魏尔斯特拉斯的影响,转而攻读数学,最后成为 名数学家。他于1847年提出集合论,解决了当时一系列悬 而未决的问题,奠定了现代数学基础。但康托尔创建集合 论的过程是十分艰难的,为此他几乎献出了生命。这也说 明如何一件新生事物的出现往往都不是一帆风顺的
一、集合的基本概念 集合论是现代数学的基础。集合论的创始人是丹麦人 康托尔(犹太人),他在柏林大学学习(工科)期间受大 数学家魏尔斯特拉斯的影响,转而攻读数学,最后成为一 名数学家。他于1847年提出集合论,解决了当时一系列悬 而未决的问题,奠定了现代数学基础。但康托尔创建集合 论的过程是十分艰难的,为此他几乎献出了生命。这也说 明如何一件新生事物的出现往往都不是一帆风顺的
1.集合 康托尔将集合定义为 所谓集合是把我们直观和思维中确定的、相互间 有明确区别的那些对象(这些对象称为元素)作为 个整体来考虑的结果
康托尔将集合定义为: 所谓集合是把我们直观和思维中确定的、相互间 有明确区别的那些对象(这些对象称为元素)作为一 个整体来考虑的结果。 1. 集合