1[1 + x10T0111x则第一行减第二行解法二,设f(x,y)=111 1+y1111-y..xlf(x,y)11[1+ x11111-x各费模5列11+x111-x111又因为f(-x,J)== f(x,y).111+y111+y11111111-y11-y:.f(x,y)关于x是偶函数,即x|f(x,y).同理,ylf(x,y),且也是偶函数,所以y"f(x,y): a(f(x,y)≤4:. xy2 Lf(x, y)= f(x,y)= kxy2故有f(x,y)=x2y2而f(x,y)中xy的系数为1.P9813@6a+9a?a?2a+12662a+14a+4b2b22b+122b +14b+46b +93性质50C2c+14c+432c+12Ix(-1)+6c+92361x(1)+3xx(-1+)d?2d+14d+46d+92d+1 26100246427-1001014543768116-100×(-100)2x(1)+32x(2)+13129)42294-342721-1005881二0[100000116116294010001000×(100)=-100×1-294000001×(-100)性质702942940111610001Ia+ba+b+ca+b+c-bc+a-c-biP98.14左2a, +b +ca, +ba,+b+cC +a38411α(二1)3a, +baz +b, +c2a, +h, +c2-b,C, +a,-C2感-ba-c右(-1)=右2a,-br-C(=1)2x(141a,-b2-C2P98.15求出所有代数余子式
1,2 1,2 1 11 0 0 11 1 1 11 1 * 1111 | (, ) 1 111 1 111 11 1 1 11 1 1 ( ,) (, ) 1 11 1 1 11 1 1 1 11 1 1 11 x x x x x y y x f xy x x x x f x y f xy . y y y y + + − ∴ − + + − − = = + + − − YZZZZZ ZZZZZZXZ 交换 行 再交换 列 解法二,设f(x,y)= 则第一行减第二行 又因为 ∴f(x,y)关于x是偶函数,即x2 |f(x,y). 同理,y|f(x,y),且也是偶函数,所以y2 |f(x,y) 2 2 2 2 2 2 2 ( ( , )) 4 | ( , ) ( , ) (, ) . f x y x y f x y f x y kx y f xy xy y ∵∂ ≤∴ ⇒ = 而 中 的系数为1. 故有f(x,y)=x2 P98 13⑥ 2 2 2 2 5 1 ( 1) 2 2 2 2 ( 2) 3 1 ( 1) 3 2 ( 3) 4 1 ( 1) 4 2 2 2 14 46 9 2 126 2 14 46 9 2 126 0 2 14 46 9 2 126 2 14 46 9 2 126 x aa a a aa bb b b bb cc c c cc dd d d dd ×− + ×− + ×− + ×− + ×− + ++ + + ++ + + ++ + + ++ + + YZZZZZ ZZZZZXZZ YZZZZ ZZZZZXZ YZZZ ZZZZXZ 性质 2 ( 1) 3 3 (246) 1 2 (2) 1 3 (427) 2 246 427 100 0 0 1 1014 543 100 768 116 1 ( 100) 342 721 100 588 294 1 ×− + × + × + × + − − × − −− − YZZZZ ZZZZZXZ YZZZZZ ZZZZZXZZ YZZZZZ ZZZXZZ 7 0 01 10 0 10 0 1000 116 1 ( 100) 1 116 1000 (100) 100 1 294 0 29400000 0 294 1 1 294 0 1 116 1000 × − ←⎯⎯ ⎯⎯⎯⎯→ × =− × = − 性质 111 1 1 11 111 1 1 2 (1) 1 1 ( 1) 2 3 (1) 1 1 ( 1) 3 1 2222 2 22 222 2 2 1( ) 2 111 2 (1) 1 2 (1) 1 2 2 98.14 2 2 2 abc ca ab abc b c P abc ca ab abc b c abccaab abc b c abc abc abc × + ×− + × + ×− + × × + × + ++ + + ++ − − ++ + + ++ − − ++ + + ++ − − − − − − − − YZZZZ ZZZZXZZ YZZZZ ZZZZZXZ YZZZZ ZZZZXZZ 左 2 2( 1) 3( 1) 2 ( 1) − − YZZZ ZZZZXZ右 右 − = P98.15 求出所有代数余子式
0024-61¥1A12A13A40Al1-1 2-126000Az4A21A2A23①直接计算有2015-300As1As2Ag3As4-60Agl00A42A4701-23A43[1 -1 2](An-123A12A13)76②3 24-11直接计算有A21A23A220145J(A3)A33-55A32P99.16@2][-1 3512-1 3-1+3+5151252120006114-1-21411x(2)+22(-)31241x(3)= 4|01246114=-0-1-1052(-1)32512531[1×(2)+51012161670o237105]Jo710591059[-1 [1 35235211-42 ×(6)+3-1-2 1-43(-1) 0-1-2 1102×(2)+40-193x(8)+400-1910-1 -14 ×(-2)+32×(7)+500-817-413×(4)+5-86311150500000-412-190-2857125-1 3 0-21-4-100-119-1000-30-7o0-28 57012-5-1-X-11x(-1)0122×(-1)001=(-7)69=-483-101934×(-4)+51000-100o0069P99.16②
11 12 13 14 21 22 23 24 31 32 33 34 41 42 43 44 1 2 14 6 0 0 0 0 121 12 6 0 0 0 0 21 15 6 3 0 0 0 03 7 0 1 2 AAAA AAAA AAAA AAAA ⎛ ⎞ ⎛ ⎞ − ⎜ ⎟ ⎜ ⎟ − − = − − ⎝ ⎠ ⎝ ⎠ − ① 直接计算有 1 12 7 12 3 321 6 4 1 014 5 5 5 − − ⎛ ⎞⎛ ⎜ ⎟⎜ ⎞ ⎟ = − ⎜ ⎟⎜ ⎝ ⎠⎝ − 11 12 13 21 22 23 31 32 33 AAA 直接计算有 A A A AAA ② ⎟ ⎟ ⎠ P99.16① 1 3 51 2 13 5 1 2 13 5 1 2 2 0 1 2 1 0 6 11 4 5 0 1 2 1 4 1 (2) 2 2( )3 0 1 2 1 4 0 1 2 1 4 0 6 11 4 5 1 (3) 4 2( 1) 3 3 1 2 1 0 12 16 5 7 0 12 16 5 7 1 (2) 5 2 1 0 3 5 0 7 10 5 9 0 7 10 5 9 13 5 1 2 2 (6) 3 0 1 21 4 3( 1) 2 (2) 4 0 0 1 19 3 (8) 4 2 (7) 5 0 0 8 17 41 3 ( 0 0 4 12 19 −++ − − × + − − − = − − − × = − × + − × + −− − − × + − − × + × + − − × − − 13 5 1 2 0 1 21 4 00 119 4 ( 2) 3 4) 5 0 0 8 63 111 0 0 0 28 57 13 5 1 2 0 1 21 4 0 0 1 10 19 000 7 3 0 0 0 28 57 1 51 2 1 ( 1) 01 2 1 4 2 ( 1) 0 0 1 10 19 ( 7)69 483 4 ( 4) 5 0 0 0 10 3 0 0 0 0 69 − −− − − − ×− + + − − − −− − − − − − − −− − − × − − × − − = − =− ×− + − − P99.16②
12014-2|1→4022-12-12-20221×(2)+2C-1-21x(2)251101-55×(2)31×(-3)+3-6X34x(2)-11x(2)+ 402200-60-246066-8 -711x(-4)+ 501022-10221-42-41:51-50-6+-4×(-1)+2820-1-2-2066-8 -7021-120221-14-32401222×(-5)+31-401300-1-2 22×(-2)+4l00-142×-4-15380800-760-362×(-8)+50-63×(-4)+41000-2001700073_32.1-1-(-1) -7·(=88P99.17①若jj.j中j,=n,则.-,取j.,取n-1,j.取n-2,j2=2,j=或若j=1,则=j,=2,j,=3,j.-=n.故只有两项.(123n)=0,(2,3.nl)=n-1.. d=Z=x"+(-1)n-lynP99.17②n=1则d=a, -bn=2,则d =(a -b)(a -b,)-(a, -b, )(a, -b)=ab -a,b, +ab,-ba2=(a, -a)(b, -b)a-bb-b,a-baz-b,b-b:b,-b,当n≥3时=0第2列与第n列成比例: b-b,an-b,b-b,:b-b
21 0 4 2 1 10 2 2 1 4 1 (2) 20 122 1 (2) 2 02 1 2 2 1 1 5 (2) 32 1 10 1 ( 3) 3 05 1 5 6 8 8 4 (2) 1 10 22 03 0 0 6 1 (2) 4 42 6 01 06 6 8 7 1 ( 4) 5 1 10 2 2 02 1 2 4 2 4 1 05 1 5 6 4 ( 1) 2 8 02 1 2 2 06 6 8 7 1 10 2 2 2 ( 5) 3 02 1 2 4 1 2 ( 2) 4 8 2 ( 8) 5 − − → × × − − + − × × − + − − × × − − + ×− + − − − − − + − − ×− + −−− − − − ×− + − ×− + ×− + − 1 10 2 2 4 3 01 1 2 4 1 3 00 1 22 0 0 4 15 14 2 3 8 00 0 76 00 3 6 6 3 ( 4) 4 1 0 0 0 20 17 00 0 0 7 3 13 1 1 ( 1) 7 ( ) 8 78 − − − − −− − × − − − − ×− + − − =− ⋅ ⋅ ⋅ − ⋅ ⋅ = P99.17①若 1 2 1 2 2 1 12 1 , , 1, 2 , 2, 1 1, 2, 3, . 1 nn n n n n jj j j n j n j n j j j j j jn τ τ n − − − = − −= = ⇒= = = = ∴ ∑ " " " " n-1 n n-1 n 中 则 取j 取 取 或若 则 故只有两项. (123 n)=0, (2,3, )=n-1 d= =x +(-1) y " P99.17② 1 1 112 2 1 22 1 11 2 2 11 2 2 2 12 1 11 12 11 2212 1 1 1 1 1 1 2, ( )( ) ( )( ) ( )( ) 3 0 2 n n n nn n dab n d a ba b a ba b ab ab ab ba a ab b ab bb ab a b bb bb n n b b a b bb bb = =− = =− −−− − =− +− =− − −− − −− − ≥ = − −− − # # ### # 则 则 当 时 第 列与第 列成比例
mX,0:0......-mx-mP99.17③......30.x1((i-)")Xnx(1)+10.-m.-mX2x.Xi=hX)m"-!- m)(-m)"-=(-1)"(m-Xi-XiZm)=71=1a/12202-100...22202-10..佳质2x(1)+32x(i4)1P99.17④0010010000120000200n-2n-2.11100-11()01012000n-2=-2 · (n-2) !(n≥2),且n=1时。D=1(左上角1)P99.17.5从最后一列开始,第n列加到第n-1列,再第n-1列加到第n-2列.…第2列加n (n+1)n(n+1)n(n-1)...2n-1-n2220-100...I1O0-20.......00o1-n...n(n+l)(-1)(-2)(1 - n) = (-1)-~(n+ 1)!22P100.18①:从第二列起:有列(第三列)1-加到第一列,则有乖以,a,-
1 2 1 2 2 1 1 1 1 10 0 1 99.17 0 1 0 ( ) ( )( ) ( 1) ( n i m i n i n m i n m i h h n n i i i i i i xm x x x m m P x m xm x x Xm Xm m m X = = × × × × × − × = − = = = − − − ∑ − − − = − − =− − ∑ ∑ ∑ ∑ # # # ## # YZZZZ ZZZZX YZZZZZZ ZZZZZZZXZ # # # ### # # -1 i-m 2 3 n 2 (1)+1 3 (1)+1 1( (x ) ) n (1)+1 1 (-x )+2 1 (-x )+3 1 (-x )+n ③ 1 1 ) . h n m − ∑ # 2 ( 1) 3 2 ( 4) 4 1 2 1 1( ) 2 1 2 100 0 2 2 2 2 22 2 10 0 99.17 0 01 0 0 0 01 0 0 0 00 2 0 2 00 2 2 11 1 1 0 10 2 01 0 0 00 2 i P n n n ×− + ×− + ↔ ↔ − − ←⎯⎯⎯ ⎯⎯⎯⎯⎯→ − − − ←⎯⎯ ⎯⎯⎯⎯→ − " " " " YZZZ ZZZXZZ " " " " 性质 ④ =-2·(n-2)! (n≥2),且 n=1 时。D=1(左上角 1) 1 99.17.5 , 2 ( 1) 3 21 2 0 10 0 00 2 0 000 1 ( 1) 1 ( 1)( 2) (1 ) ( 1) ( 1)! 2 2 n P n n n n n n n n n − − − −− − − − + = − − − =− + " " " " " " " "" " i " ii 从最后一列开始,第n列加到第n-1列,再第n-1列加到第n-2列 第 列加 n(n+1) n(n+1) 2 2 = P100.18①:从第二列起:有列(第三列) 乖以 1 1 i a − − 加到第一列,则有
a.2 aj-1000a.D=000a,0000ann+11=aa,...a,(a=aa,...a,(a.12 a,1=a(α;±0)=a.aa.a-aa,.-②i=lP100.181cosa112cosaD12cosa二=cosnαn112cosa证法一,用归纳法,D成立,设k<n时Dk=coskα,当k=n时,因为Dn=cos 2αDn-1-1·D n-2=(2cosα·cos(n-1)α-cos(n-2)α)=(cos na +cos(n-2a-cos(n-2)a)=cosna.证毕证法二::D,=2coscxDn-1-Dn-2找不出适当倍数左移(i?=-1),Dn-(cosα+isinα)Dn-1=(cosα-isinα)[Dn-1-(cosα+isinα)Dn-2]同理Dn=(cosa-isina)Dn-1=(cos(n-1)a+isin(n-1)a)(isina)相减:2isinaDn=isina[cosna+sinna+cosna-sinna]即D=-(2cosna)= cosna2P100.18③以第一行×(-1)加到后面各行
1 2 1 1 2 1 1 2 1 2 2 1 1 1 11 1 1 1 11 1 0 00 00 0 0 000 1 1 () ( n o i i n n n n o n o i i i i n o n ii n i a a a D a a aa a a aa a a a a aa a a a a a α + = − + = = − − + = = = −= − = + ≠ ∑ ∑ ∑ ∑ " " " " """" " " " "" ,( 0) i ) ② P100.18④ cos 1 1 2cos 1 1 2cos cos 1 1 2cos a a D n a n a = = % α % % 证法一,用归纳法,D1成立, cos , , cos 2 1 (2 cos cos( 1) cos( 2) ) (cos cos( 2 cos( 2) )) 1 2 cos . k nD k k n k Dn D D n n na n a n n n na α α α α α <= = = −⋅ = ⋅ − − − = + − − − − − = 设 时 当 时 因为 证毕 a n−2 证法二: [ ] 2 (cos sin ) (cos( 1) sin( 1) )( sin ) 1 sin sin cos sin cos sin 2cos 1 2 (cos sin ) (cos sin )[ (cos sin ) ] 1 1 ( 1), n n n a i aD n a i n a i a i a i a na na na na D cxD D n n D iD i D iD nn n D i αα αα αα = − = −+ − − = ++ − = − − − −+ =− −+ − − ∵ = − n 找不出适当倍数左移. 同理 相减:2 D 1 (2cos ) cos 2 即D na n = = na . P100.18⑤以第一行×(-1)加到后面各行