5-4一维简谐运动的合成拍现象一两个同方向同频率简谐运动的合成0Xi = A, cos(ot +P1)AAx2 = A, cos(ot +P2)X = Xi +X2Ax = Acos(ot +@)xxxX2A= A? + A2 + 2 AA, cos(P2 -1)两个同方向同频A sin Pr + A, sin P2tan@ =率简谐运动合成A, cosPi + A2 cosP2后仍为简谐运
1 A1 1 O x x 一 两个同方向同频率简谐运动的合成 1 2 x = x + x 1 1 2 2 1 1 2 2 cos cos sin sin tan A A A A + + = 2 cos( ) 1 2 2 1 2 2 2 A = A1 + A + A A − x = Acos(t +) cos( ) 1 = 1 +1 x A t cos( ) 2 = 2 +2 x A t A x2 x A2 2 两个同方向同频 率简谐运动合成 后仍为简谐运动
讨论A= A? + A +2 AA, cos(P2 -P)△β=P2 -P =2k元 (k=0,±1,±2,.)(1)相位差xxTA=A+Ax =(A + A)cos(ot +@)β=P, =P + 2k元
x x t O O =2 =1 + 2kπ ( )cos( ) x = A1 + A2 t + A A = A1 + A2 A1 A2 T (1)相位差 =2 −1 = 2kπ (k = 0,1, 2, ) 2 cos( ) 1 2 2 1 2 2 2 讨论 A = A1 + A + A A −
A = A? + A +2AA, cos(P2 -1)(2)相位差 β=2 - =(2k+1)元 (k= 0,±1, )Xi = A cos otx = (A - A)cos(のt +元1x, = A, cos(t +元)xxA =A - A2Φ=20
x x t O O A = A1 − A2 = 2 ( )cos( π) x = A2 − A1 t + 2 cos( ) 1 2 2 1 2 2 2 A = A1 + A + A A − T A2 2 A1 A (2)相位差 =2 −1 = (2k +1)π (k = 0,1, ) x A cost 1 = 1 cos( π ) x2 = A2 t +
A = A? + A2 + 2 AA, cos(P2 - P1)相位差△β = P2 - Pi△β= 2k 元(k=0,±l,...)(1)相位差相互加强A= A + A△β = (2k +1) 元(k=0,±l,...)(2)相位差A=|A - A2相互减弱(3)一般情况A +A >A>A -A2
(3)一般情况 A1 + A 2 A A1 − A 2 A = A 1 − A 2 (2)相位差 (1)相位差 A = A1 + A 2 = 2 k π ( k = 0 , 1 , ) 相互加强 相互减弱 = ( 2 k + 1 ) π ( k = 0 , 1 , ) ➢ 相位差 = 2 − 1 2 cos( ) 1 2 2 1 22 2 A = A1 + A + A A −
例1已已知两个同方向的简谐振动xi = 0.04cos(10t + 元/3)X2 = 0.03 cos(10t + @)2k元+元/3则(1)X十为最大时,为2k元+4元/3(2)X+为最小时,为
(2) x1 + 为最小时, x2 为_ 则(1) 为最大时, 为_ 1 2 x + x 2kπ + π /3 2kπ + 4π /3 例1 已知两个同方向的简谐振动: 0.04cos(10 π 3), x1 = t + 0.03cos(10 ) x2 = t +