性质Green公式曲线定向第二型曲线积分设π=(a,y,z),则dr=(dac,dy,dz).于是第二型曲线积分也常表示为Pda +Qdy + Rdz.(11.2)L定理1设有区域D CR3,连续向量场F:D→R3.又设LCD是一条有向光滑曲线,其参数方程为π=(t),α≤t≤β,并且参数增加的方向为L的方向,则有F. dr=(Fo) .T(t)dt.(11.3)JLa若 F = (P, Q, R), r(t) = (r(t), y(t), z(t), 则F . dr = / (P(e(t), g(t),z(t)a(t)L+ Q(c(t), y(t), z(t)y'(t) + R(a(t), y(t), z(t)z(t))dt. (11.4)返回全屏关闭退出6/32
½ 1.È© 5 Green úª ~r = (x, y, z), K d~r = (dx, dy, dz). u´1.È©~L« Z L P dx + Qdy + Rdz. (11.2) ½n 1 k« D ⊂ R3 , ëYþ| F~ : D → R3 . q L ⊂ D ´^ k1w, Ùëê§ ~r = ~r(t), α 6 t 6 β, ¿ ëêO\ L , Kk Z L F~ · d~r = Z β α (F~ ◦ ~r) · ~r0 (t) dt. (11.3) e F~ = (P, Q, R), ~r(t) = (x(t), y(t), z(t)), K Z L F~ · d~r = Z β α P (x(t), y(t), z(t))x 0 (t) + Q(x(t), y(t), z(t))y 0 (t) + R(x(t), y(t), z(t))z 0 (t) dt. (11.4) 6/32 kJ Ik J I £ ¶ '4 òÑ