第一节常数项级数的概念 西一、问题的提出 级数的概念 基本性质 巴四、收敛的必要条件 巴五、小结思考题
庄=、问题的提出 A1.计算圆的面积 R 正六边形的面积a1 午正十二边形的面积a1+a2 工工工 正3×2"形的面积a1+a2+…+m 即A≈a1+a2+…+an 3 3 2 x 3x 十 310100100010 上页
一、问题的提出 1. 计算圆的面积 R 正六边形的面积 正十二边形的面积 1 a a1 + a2 正 形的面积 n 32 a1 + a2 ++ an n A a + a ++ a 即 1 2 = + + ++ n + 10 3 1000 3 100 3 10 3 3 1 2
二、级数的概念 A1.级数的定义: 一般项 ∑ Ln=l1+L2+W3+…+Ln+ H=1 (常数项)无穷级数 级数的部分和 sn=1+2+…+n=∑吗 i=1 部分和数列 S1=l1,S2=L1+l2,S3=1+W2+u3 =L1+W2+…十… 上页
二、级数的概念 1. 级数的定义: = + + ++ + = n n un u1 u2 u3 u 1 (常数项)无穷级数 一般项 部分和数列 = = + + + = n i n u u un ui s 1 1 2 级数的部分和 , 1 u1 s = , 2 u1 u2 s = + , , s3 = u1 + u2 + u3 sn = u1 + u2 ++ un ,
中2.级数的收敛与发散: 当n无限增大时如果级数∑un的部分和 H-=1 数列n有极限s,即mSn=s则称无穷级数 n→ 庄∑2收敛这时极限叫做级数∑的和并 n: 写成S=1+u2+…+l2+… oo 王如果没有极限则称无穷级数∑4发散 王页下
2. 级数的收敛与发散: 当n 无限增大时,如果级数 n=1 un 的部分和 数列 n s 有极限s , 即 s s n n = → lim 则称无穷级数 n=1 un 收 敛,这时极限s 叫做级数 n=1 un 的 和.并 写成s = u1 + u2 ++ u3 + 如果 n s 没有极限,则称无穷级数 n=1 un 发散
即常数项级数收敛(发散)lms,存在(不存在) n→0 余项=S-S,=m1+m2+…=∑mnm 即Sn≈S误差为rn(imrn=0 无穷级数收敛性举例:Koch雪花 做法:先给定一个正三角形,然后在每条边上对 称的产生边长为原边长的1/3的小正三角形.如此 c类推在每条凸边上都做类似的操作,我们就得到 牛了面积有限而周长无限的图形“K雪花 上页
即 常数项级数收敛(发散) n n s → lim 存在(不存在) 余项 n n r = s − s = un+1 + un+2 + = = + i 1 un i 即 s s n 误差为 n r (lim = 0) → n n r 无穷级数收敛性举例:Koch雪花. 做法:先给定一个正三角形,然后在每条边上对 称的产生边长为原边长的1/3的小正三角形.如此 类推在每条凸边上都做类似的操作,我们就得到 了面积有限而周长无限的图形——“Koch雪花”.