第十一章非参数检验 在社会研究中我们经常要采用定序尺度,但直到现 在,我们都还没有机会讨论涉及到定序尺度的显著性检 验。本章要讲述某些用于定序尺度的双样本检验。与以 前所讲的检验不同,使用这类方法不需要对总体分布作 任何事先的假定(例如正态总体)。同时从检验的内容来 说,也不是检验总体分布的某些参数(例如均值、成 数、方差等),而是检验总体某些有关的性质,所以称 为非参数检验。非参数检验,泛指“对分布类型已知的 总体进行参数检验”之外的所有检验方法 202l/12/21
2021/12/21 1 第十一章 非参数检验 在社会研究中我们经常要采用定序尺度,但直到现 在,我们都还没有机会讨论涉及到定序尺度的显著性检 验。本章要讲述某些用于定序尺度的双样本检验。与以 前所讲的检验不同,使用这类方法不需要对总体分布作 任何事先的假定(例如正态总体)。同时从检验的内容来 说,也不是检验总体分布的某些参数(例如均值、成 数、方差等),而是检验总体某些有关的性质,所以称 为非参数检验。非参数检验,泛指“对分布类型已知的 总体进行参数检验”之外的所有检验方法
与均值差等检验比较,非参数检验有什么优点呢? 在对均值差进行t检验时,不仅要有定距尺度的假定, 还要有正态总体的假定。当然,对于大样本,正态总体 的假定可以放松。但正是对于小样本,这种假定最容易 出问题。因此,在满足下面两条件之一时,我们期望用 非参数检验代替均值差检验:①没有根据采用定距尺 度,但可以安排数据的顺序(即秩);②样本小且不能假 定具有正态分布。由于非参数检验不能充分利用全部现 有的资料信息。因此,如果有根据采用定距尺度,并且 如果对于小样本能够假定其具有正态性,或对大样本能 够放松对正态性假定的要求,一般宁愿使用均值差检 验,而不用非参数检验 202l/12/21
2021/12/21 2 与均值差等检验比较,非参数检验有什么优点呢? 在对均值差进行t 检验时,不仅要有定距尺度的假定, 还要有正态总体的假定。当然,对于大样本,正态总体 的假定可以放松。但正是对于小样本,这种假定最容易 出问题。因此,在满足下面两条件之一时,我们期望用 非参数检验代替均值差检验:①没有根据采用定距尺 度,但可以安排数据的顺序(即秩);②样本小且不能假 定具有正态分布。由于非参数检验不能充分利用全部现 有的资料信息。因此,如果有根据采用定距尺度,并且 如果对于小样本能够假定其具有正态性,或对大样本能 够放松对正态性假定的要求,一般宁愿使用均值差检 验,而不用非参数检验
非参数检验,无需做出经典统计所必要的 关于分布的任何假设。唯一需要的假设是:全 部数据或数据对都出自相同的基本总体,且取 样是随机的、相互独立的。基于这种原因,非 参数检验又称为分布自由(或无分布检验。 无 分布”不是指总体真的无分布,而是指虽有时 对 总体分布一无所知,但仍可以进行分析。不仅 如此,这些很容易理解的方法还可以用于处理 2等级的资料和定性的信息
2021/12/21 3 非参数检验,无需做出经典统计所必要的 关于分布的任何假设。唯一需要的假设是:全 部数据或数据对都出自相同的基本总体,且取 样是随机的、相互独立的。基于这种原因,非 参数检验又称为分布自由(或无分布)检验。 “无 分布”不是指总体真的无分布,而是指虽有时 对 总体分布一无所知,但仍可以进行分析。不仅 如此,这些很容易理解的方法还可以用于处理 等级的资料和定性的信息
很显然,如果把从一个正态总体中抽取的数据用分布 自由来处理,其效果肯定不如相应的参数检验有力。我们 一般用下述指标来确定非参数检验的“效率” 参数检验中的n En 非参数检验中的n 式中的n0和n分别是两种检验 检验力又称检验势 保证实现给定的检验力所需的样本 它是用1-或[1-(犯 容量。如果说某种非参数检验的检 第二类错误的概率) 验效率为95%,就意味着这种非参 来定义的。也就是说 数检验在使用100个数据时的效力等 对于固定的样本容量 检验能够否定错误假 于检验(在正确模型条件下)使用95 设的能力越大,其相 个数据的效力。 对检验力越大 202l/12/21
2021/12/21 4 很显然,如果把从一个正态总体中抽取的数据用分布 自由来处理,其效果肯定不如相应的参数检验有力。我们 一般用下述指标来确定非参数检验的“效率” 。 式中的n 0和n分别是两种检验 保证实现给定的检验力所需的样本 容量。如果说某种非参数检验的检 验效率为95%,就意味着这种非参 数检验在使用100个数据时的效力等 于t检验(在正确模型条件下)使用95 个数据的效力。 检验力又称检验势, 它是用1―β或[1―(犯 第二类错误的概率)] 来定义的。也就是说, 对于固定的样本容量, 检验能够否定错误假 设的能力越大,其相 对检验力越大
第一节符号检验 “符号检验”是针对观察结果之差的符号来作估价的。 在 单一实验组的实验中,对于样本中每个个体的前测与后测, 如果我们并不关心(X1X)的具体数值,而只关心是增大 了还是减小了。具体来说,就是只研究差值d的符号,即 若X1>X,记作“+”; 若X1<X0,记作“_”; 若X1=X,删去 那么我们面对的就将是配对样本的“符号检验”问题 了。“符号检验”并不要求配对样本出自同一个总体,重要 的是各个对的结果要相互独立
2021/12/21 5 “符号检验”是针对观察结果之差的符号来作估价的。 在 单一实验组的实验中,对于样本中每个个体的前测与后测, 如果我们并不关心(X1―X0)的具体数值,而只关心是增大 了还是减小了。具体来说,就是只研究差值 d 的符号,即 若X1>X0,记作“+”; 若X1<X0,记作“―”; 若X1 =X0,删去。 那么我们面对的就将是配对样本的“符号检验”问题 了。“符号检验”并不要求配对样本出自同一个总体,重要 的是各个对的结果要相互独立。 第一节 符号检验