第十二章相关与回归分析 ■第一节相关关系及种类 ■第二节定类变量的相关分析 第三节定序变量的相关分析 第四节定距变量的相关分析 第五节回归分析
第十二章 相关与回归分析 ◼ 第一节 相关关系及种类 ◼ 第二节 定类变量的相关分析 ◼ 第三节 定序变量的相关分析 ◼ 第四节 定距变量的相关分析 ◼ 第五节 回归分析
社会上,许多现象之间也都有相互联系,例如: 身高与体重、教育程度和收入、学业成就和家庭环境 智商与父母智力等。在这些有关系的现象中,它们之 间联系的程度和性质也各不相同。 本书第十章提出了两总体的检验及估计的问题,这 意味着我们开始与双变量统计方法打交道了。双变量 统计与单变量统计最大的不同之处是,客观事物间的 关联性开始披露出来。这一章我们将把相关关系的讨 论深入下去,不仅要对相关关系的存在给出判断,更 要对相关关系的强度给出测量,同时要披露两变量间 的因果联系,其内容分为相关分析和回归分析这两个 大的方面
社会上,许多现象之间也都有相互联系,例如: 身高与体重、教育程度和收入、学业成就和家庭环境、 智商与父母智力等。在这些有关系的现象中,它们之 间联系的程度和性质也各不相同。 本书第十章提出了两总体的检验及估计的问题,这 意味着我们开始与双变量统计方法打交道了。双变量 统计与单变量统计最大的不同之处是,客观事物间的 关联性开始披露出来。这一章我们将把相关关系的讨 论深入下去,不仅要对相关关系的存在给出判断,更 要对相关关系的强度给出测量,同时要披露两变量间 的因果联系,其内容分为相关分析和回归分析这两个 大的方面
第一节变量之间的相互关系 1.相关程度 完全相关,指变量之间为函数关系;完全不相关指变 量之间不存在任何依存关系,彼此独立。不完全相关介于 两者之间。不完全相关是本章讨论的重点。 由于数学手段上的局限性,统计学探讨的最多的是定 距一定距变量间能近似地表现为一条直线的线性相关。在 统计中,对于线性相关,采用相关系数(记作/)这一指标 来量度相关关系程度或强度。就线性相关来说,当/= 时,表示为完全相关;当/=0时,表现为无相关或零相 关;当0<<1时,表现为不完全相关
第一节 变量之间的相互关系 1. 相关程度 完全相关,指变量之间为函数关系;完全不相关指变 量之间不存在任何依存关系,彼此独立。不完全相关介于 两者之间。不完全相关是本章讨论的重点。 由于数学手段上的局限性,统计学探讨的最多的是定 距—定距变量间能近似地表现为一条直线的线性相关。在 统计中,对于线性相关,采用相关系数(记作r)这一指标 来量度相关关系程度或强度。就线性相关来说,当r =l 时,表示为完全相关;当r =0时,表现为无相关或零相 关;当0< r <1时,表现为不完全相关
2.相关方向:正相关和负相关 所谓正相关关系是指一个变量的值增加时,另一变 量的值也增加。例如,受教育水平越高找到高薪水工作的 机会也越大。而负相关关系是指一个变量的值增加时,另 变量的值却减少。例如,受教育水平越高,理想子女数 目越少。要强调的是,只有定序以上测量层次的变量才分 析相关方向,因为只有这些变量的值有高低或多少之分。 至于定类变量,由于变量的值并无大小、高低之分,故定 类变量与其他变量相关时就没有正负方向了
2. 相关方向:正相关和负相关 所谓正相关关系是指一个变量的值增加时,另一变 量的值也增加。例如,受教育水平越高找到高薪水工作的 机会也越大。而负相关关系是指一个变量的值增加时,另 一变量的值却减少。例如,受教育水平越高,理想子女数 目越少。要强调的是,只有定序以上测量层次的变量才分 析相关方向,因为只有这些变量的值有高低或多少之分。 至于定类变量,由于变量的值并无大小、高低之分,故定 类变量与其他变量相关时就没有正负方向了
3.因果关系与对称关系 因果关系中两个变量有自变量( independent variable)和因变量 dependent Variable)之分 (1)两个变量有共变关系; (2)因变量的变化是由自变量的变化引起的 (3)两个变量的产生和变化有明确的时间顺序,前者 称为自变量,后者称为因变量。 表现为对称关系的相关关系,互为根据,不能区分自 变量和因变量,或者说自变量和因变量可以根据研究目的 任意选定,例如身高和体重之间的关系
3. 因果关系与对称关系 因果关系中两个变量有自变量(independent Variable)和因变量(dependent Variable)之分: (1)两个变量有共变关系; (2)因变量的变化是由自变量的变化引起的; (3)两个变量的产生和变化有明确的时间顺序,前者 称为自变量,后者称为因变量。 表现为对称关系的相关关系,互为根据,不能区分自 变量和因变量,或者说自变量和因变量可以根据研究目的 任意选定,例如身高和体重之间的关系