互反多项式( reciprocal polynomial) A q=q Ag A(q)y()=B(q)((t-d0)+v(-d) A(q)=1+a4g B(q)=b+bq+…+bn m=n-do
( ) ( ) ( )( ( ) ( )) 0 0 1 1 A q y t = B q u t − d + v t − d − − ( ) ( ) 1 A q q A q − −n = m m n n B q b b q b q A q a q a q − − − − − − = + + + = + + + 1 0 1 1 1 1 1 ( ) ( ) 1 互反多项式(reciprocal polynomial) m=n-d0
Ay(t)=B(l(t)+v()(31) 假设A、B互质且A是首一的( monIc) R()=l2(t)-Sv()(32) Controller U Pr rocess L Ru= Tu.-s BA figure 3. 2 A general linear controller with two degrees of freedom
Ay(t) = B(u(t) + v(t)) Ru(t) Tu (t) Sy(t) = c − 假设A、B互质且A是首一的(monic) (3.1) (3.2)
BT BR y(t)= (t)+ /(t) AR+ bs AR+ Bs (33) AT Bs l(t)= u (t) v() AR+ Bs AR+ Bs AR+bs= (34) Diophantine方程, Bezout恒等式
( ) ( ) v(t) AR BS BS u t AR BS AT u t c + − + = ( ) ( ) v(t) AR BS BR u t AR BS BT y t c + + + = (3.3) AR + BS = Ac (3.4) Diophantine方程,Bezout恒等式
二、模型跟踪(mode|- following Amym,(t=Bmu(t) (3.5) BT BT B ar+ bs
m m c A B A BT AR BS BT = = + (3.5) 二、模型跟踪(model-following) A y (t) B u (t) m m = m c
B=BB (37) B-首一稳定且阻尼特性良好的因子 B不稳定或阻尼特性不好的因子 B -BB (38)
+ − B = B B ' Bm B Bm − = (3.7) 首一 稳定且阻尼特性良好的因子 (3.8) + B B − 不稳定或阻尼特性不好的因子