2+Ad=0 b1.自然的周期边界条件 d(q+2丌)=d()=m 0.1.2 a()=A cos mo+Bm sin mo sin 0(sin 0)+[(+Isin 6-dJo=0 de d b2.1阶缔合勒让德方程 x=cos0 sin e de sin e r a ---SIn a0 ax (1-x2),]+[(+1)(1-x2)-m]=0
0 2 2 + = d d sin (sin ) [ ( 1)sin ] 0 2 + + − = l l d d d d b1. 自然的周期边界条件: ( + 2 ) = () = m 2 m = 0,1,2, () = Am cosm + Bm sin m b2. l-阶缔合勒让德方程 x = cos x x x x x = − − = − = sin sin sin (1 ) 2 2 (1 ) [(1 ) ] [ ( 1)(1 ) ] 0 2 2 2 2 + + − − = − − l l x m dx d x dx d x
]+[(+1) dx (,0.q)=∑∑(cr+_) Am cos mo+ B sin mo)(O) b3.4阶勒让德方程 u是轴对称的,对q的转动不改变u。 m=0 2x=,+(+1)e=0 dx
] 0 1 [(1 ) ] [ ( 1) 2 2 2 = − + + − − x m l l dx d x dx d b3. l-阶勒让德方程 u 是轴对称的,对φ的转动不改变 u 。 m = 0 (1 ) 2 ( 1) 0 2 2 2 + + = − − l l dx d x dx d x ( , , ) ( )( cos sin ) ( ) 1 0 = + + + = A m B m r D u r C r l m m l l l l m
2.柱座标: 1 au aa (P-)+ 0 p dpdp pdp 分离变量(,0,2)=R()y(q)z(=) ΦZddR、RZd2Φ (p,)+ 0 dz 2+A⑩=0 p dr pdr p dz Rdp2R2z么2s2 y h a d()=A cos mo+ Bm sin mo m=0
2. 柱座标: u(,,z) = R()()Z(z) ( ) ) 0 2 2 2 2 2 + = + dz d Z R d RZ d d dR d Z d ( ) 0 1 ( ) 1 2 2 2 = + + z u z u u 0 2 2 + = d d + + = 2 2 2 2 2 2 dz d Z d Z dR d R d R R 分离变量 a. = m 2 m = 0,1,2, () = Am cosm + Bm sin m (x, y,z) r x y z z h
d Rx dR 1 dz r dp pr dp p 2=-1 ZuZ=O dr 1 dR +(L )R=0 Z=0 Z=C+Dz d2r 1 dr m dr dR tadp R=O P m2R=0 a(p dp R )-m2R=0 dR R=0 n B r= AemInp+Be -mInp= Ap
+ − = − = − 2 2 22 2 2 1 1 1 dz d Z Z m d dR d R d R R b. Z ' ' − Z = 0 ( ) 0 1 22 2 2 + + − R = m d dR dd R c1. = 0 Z = C + Dz m mB A = + Z '' 0 = 2 2 2 2 1 0 d R dR m R d d + − = 2 2 2 2 0 d R dR m R d d + − = 2 ( ) 0 d dR m R d d − = 2 2 2 0 (ln ) d R m R d − = m m ln ln R Ae Be − = +
c2. ≠0 Z-uZ=O x,y,2) Z=Ce +De -vA 2 上下底的非齐次边界条件 pP如+(- dr 1 dR )R=0 ldr 1 dR dr 1 dR +(--2)R (1-=2)R=0 u a dx 贝塞耳方程
c2. 0 c2.1. 0 z z Z Ce De − = + x = (1 ) 0 1 ( ) ] 1 [ 1 2 2 2 2 2 2 2 2 + + − = + + − R = x m dx dR dx x d R R m d dR d d R 贝塞耳方程 上下底的非齐次边界条件 ( ) 0 1 2 2 2 2 + + − R = m d dR d d R Z''−Z = 0 (x, y,z) r x y z z h