9.1习题2 1.细杆的一端弹性固定,初始时刻在另一端受到一纵向 冲量作用,但初始位移为零,试求杆的纵振动。 解 0 u(x, t)+hu, (x,D)x-l=0 △P 1=0=0/ 只出现于ε 小段 0(E<x≤ 0区 n1=0-1/(x≤E) mu= pau
9.1 习题2 1. 细杆的一端弹性固定,初始时刻在另一端受到一纵向 冲量作用,但初始位移为零,试求杆的纵振动。 k 0 l I 解: 0 2 utt − a uxx = u t=0 = 0 . / ( ) 0 ( ) 0 = = I x x l ut t ux (x,t) x=0 = 0 u(x,t) + hux (x,t) x=l = 0 0 I = P 只出现于ε 一小段。 = mut = ut
分离变量+a2T=0 X"+λX=0(0):=0k(+hx()=0 A>0 X(x)=C, cos ax+ C2 sin vax X(x)=√AC2cos√Ax-Clsn√4x AX(0)=0國2= xX(O)+hN=0國→ X()+bX(D)=C[cos√l-hλsn√=0 cgl=h√
'' 0; 2 T +a T = X ''+X = 0; X '(0) = 0 X (l) + hX '(l) = 0. 0 X (x) C cos x C sin x = 1 + 2 X '(0) = 0 C2 = 0 '( ) [ cos sin ] 2 1 X x = C x −C x X (l) + hX '(l) = 0. X (l) + hX '(l) = C1 [cos l − h sin l] = 0 分离变量 ctg l = h
以0=此式确定本征值园,为交点 AX(x)=C2COS√λx T+nT a2 naat T=0 T(t)=Acos+Bsin nzA、B是积分常数 n=12.3… 42(x)=(A,cos√2+ B. sin√2a)cosy1x 1(x:)∑(4syxm+Bsm√a)coyx
cot l h = 此式确定本征值 n ,为交点。 2 4 6 8 10 12 -30 -20 -10 10 20 30 X x C x n ( ) cos = 2 '' 0; 2 2 2 2 + T = l n a T ( ) cos sin , l n at B l n at T t A = + A、B 是积分常数。 u (x,t) (A cos at B sin at)cos x. n = n n + n n n n =1,2,3 ( , ) ( cos sin ) cos . 1 u x t A at B at x n n n n n n = + =
1+cos2、λ,x [cos a,x]'dx dx=2+cos2√nxx 0 sn2√,x sIn 2 2sin√ 2.l cos√Al sIn lcot√ X vAn cot2√λ,l+122x,h2+1 cot√x h cot√=h√ 1-cos2√n sn√nxax= 0 2 224h2+1
2 1 1 cot 1 2 cot 2 1 2 sin cot 2 1 2 2sin cos 4 1 2 sin 2 4 1 2 sin 2 4 1 2 cos 2 2 1 2 2 1 cos 2 [cos ] 2 2 2 0 0 0 0 2 2 + = + + = + = + = + = + = + = + + = = h l h l l l l l l l l l l l x l xdx l dx x N x dx n n n n n n n n n n n n l n n l n l n l n n 2 1 1 2 2 1 cos 2 [sin ] 2 0 0 2 + = − − = h l h dx x x dx n l n l n cot l h =
cOS X cOS ∫cos√)x+cox+√m) sin( sin( 2-√m n SIn( 22+ siny2,lcos√nl-cos√λ iI sin√nl,sin√2lcos√nl+cos√λ il sin a, sin a, I cos cosa, sin v am/ √si2 sin ascot√ λ.cot Sin V: m ,sn√ √ n V/hsin√ x sin am x-√m√hsi xSin VAmx=0
0 0 0 0 1 cos cos [cos( ) cos( ) ] 2 1 sin( ) sin( ) { } 2 1 sin( ) sin( ) [ ] 2 1 sin cos cos sin sin cos cos sin [ ] 2 s l l n m n m n m n m n m l l n m n m n m n m n m n m n m n m n m n m n m n m n x xdx x x dx x x l l l l l l l l l l = − + + − + = + − + − + = + − + − + = + − + = in cos cos sin sin sin cot cot sin sin sin sin sin sin 0 n m m n m n n m m m n n m n m n m nm n n m l l l l l l l l l l h x x h x x − = − = − =