第二章导数与微分总习题、自测题及其详解
第二章 导数与微分 总习题、自测题及其详解
总习题二1.求下列函数的导数.x2 -5x+1,求f'(-1),J(2),(1)已知f(x)=x3(3) y=(x3 -x)6(2) y=xsinxlnx :(5) y=sin'(2x-1) :(4) y=3sin(3x+5) ;(6) y=eV3x+I(7) y=ln'(x2) .2A(8) y=2 imx(9)y=arccos-x(10) y=earetan dk ,(11) y cosx=x sin3x (13) y=1 + xe(12) cos(xy)=x :;1- x(14) ysinx-cos(x-y)=0 :(15)y=)V1+x?x(x2 + 1)(17) =2xVr(16)yV(x?-1)2(18) y=(1+x2)si2.求下列函数的二阶导数(1) y= xer(2) =er(3)y:(4) y=lnsinxx(5) y=x :(6) y=sin(x+y)3.验证y=e sinx满足关系式y"-2y+2y=0114.验证y=ev+e-满足关系式xy"+!_4 V=0.21dy5.求下列各参变量方程中的导数dx
总习题二 1. 求下列函数的导数. (1) 已知 2 3 5 1 ( ) x x f x x − + = ,求 f ( 1) − , f (2) , 1 f a ; (2) y x x x = sin ln ; (3) 3 6 y x x = − ( ) ; (4) y x = + 3sin(3 5) ; (5) 2 y x = − sin (2 1) ; (6) 3 1 x y e + = ; (7) 3 2 y x = ln ( ) ; (8) ln 2 x x y = ; (9) 2 y arccos x = ; (10) arctan x y e = ; (11) 2 2 y x x x cos sin 3 = ; (12) cos( ) xy x = ; (13) 1 y y xe = + ; (14) y x x y sin cos( ) 0 − − = ; (15) 2 1 1 x y x x − = + ; (16) 2 3 2 2 ( 1) ( 1) x x y x + = − ; (17) 2 x y x = ; (18) 2 sin (1 ) x y x = + . 2. 求下列函数的二阶导数. (1) 2 x y xe = ; (2) x y e = ; (3) x e y x = ; (4) y x = ln sin ; (5) x y x = ; (6) y x y = + sin( ) . 3. 验证 sin x y e x = 满足关系式 y y y − + = 2 2 0 . 4. 验证 x x y e e − = + 满足关系式 1 1 0 2 4 xy y y + − = . 5. 求下列各参变量方程中的导数 dy dx
x=a(@-sin@)x = arctant(1)(2)已知(y=ln(1+t?)y=a(1-cosp)f(x)=2,求f(1)6.设f(x)在x=1处连续,且lim→ x-17:设y=f(x),且f(x)存在,△x是自变量在x处的增量,求f?(x+Ax)- f(x)lim =Ar→0Ax8".已知f(x)在(-00,+o)上有定义,f(0)=0,且对任意的x,y,恒有f(x+y)= f(x)+ f(y)+2xy, 求 f(x)9.设曲线f(x)=x"在点(1,1)处切线与x轴交点为(,,0),求limf(5).(1998年数学三)3x-2..且 f(x)=arctan x?,10°.设1(1993年数学三)dxx3x+2([x=p(x)d'y_y"(t)p'(t)-y'(t)p"(t)11.设参数方程为证明:dr?(y=y(x)[p(]
(1) ( sin ) (1 cos ) x a y a = − = − ; (2) 已知 2 arctant ln (1 t ) x y = = + . * 6 . 设 f x( ) 在 x =1 处连续,且 1 ( ) lim 2 x 1 f x → x = − ,求 f (1) . * 7 . 设 y f x = ( ) , 且 f x ( ) 存在, x 是 自 变 量 在 x 处 的 增 量 , 求 2 2 0 ( ) ( ) lim x f x x f x → x + − . * 8 . 已知 f x( ) 在 ( , ) − + 上有定义, f (0) 0 = ,且对任意的 x y, ,恒有 f x y f x f y xy ( ) ( ) ( ) 2 + = + + ,求 f x( ) . * 9 . 设曲线 ( ) n f x x = 在点 (1,1) 处切线与 x 轴交点为 ( ,0) n ,求 lim ( ) n n f → .(1998 年数学三) * 10 . 设 3 2 3 2 x y f x − = + ,且 2 f x x ( ) arctan = ,求 x 0 dy dx = .(1993 年数学三) * 11 . 设参数方程为 ( ) ( ) x x y x = = ,证明: 2 2 3 ( ) ( ) ( ) ( ) ( ) d y t t t t dx t − =
总习题二详解x2-5x+1,求F'(-1),J(2),1. (1)已知f(x)x3(3) y=(x3 -x)6(2)y=xsinxlnx;(5) y=sin’(2x-1) :(4)y=3sin(3x+5) ;V3x+(7) y=ln'(x) :(6) y=e2(8)y=2inx(9)y=arccosx(10) y=earctan /(11) ycosx=x sin3x(13) y= 1 + xej(12) cos(xy)=x ;1-x(14) ysinx-cos(x-y)=0 :(15) y=V1+x2x(x2 +1)(17) =2x/z(16)JV(x?-1)?(18) =(1+x)sinz1.解:(1)因为F()=(-5x+)x-(-5x+1)()_(2x-5)-3r(-5+1)(x3)2(x)210x-x-3x4f(-1)= f(x) I==-14所以13f(2) = f(x) Ix-2 =16()= F'(x)_,=10d -2 -3aa(2) J'=(xsinxlnx)
总习题二详解 1. (1) 已知 2 3 5 1 ( ) x x f x x − + = ,求 f ( 1) − , f (2) , 1 f a ; (2) y x x x = sin ln ; (3) 3 6 y x x = − ( ) ; (4) y x = + 3sin(3 5) ; (5) 2 y x = − sin (2 1) ; (6) 3 1 x y e + = ; (7) 3 2 y x = ln ( ) ; (8) ln 2 x x y = ; (9) 2 y arccos x = ; (10) arctan x y e = ; (11) 2 2 y x x x cos sin 3 = ; (12) cos( ) xy x = ; (13) 1 y y xe = + ; (14) y x x y sin cos( ) 0 − − = ; (15) 2 1 1 x y x x − = + ; (16) 2 3 2 2 ( 1) ( 1) x x y x + = − ; (17) 2 x y x = ; (18) 2 sin (1 ) x y x = + . 1.解: (1) 因为 2 3 2 3 3 2 2 3 2 3 2 2 4 ( 5 1) ( 5 1)( ) (2 5) 3 ( 5 1) (x) ( ) ( ) 10 3 , x x x x x x x x x x x f x x x x x − + − − + − − − + = = − − = 所以 1 ( 1) ( ) | 14 x f f x = − = = − , 2 13 (2) ( ) | 16 x f f x = = = , ( ) 3 2 4 1 1 | 10 3 x a f f x a a a a = = = − − ; (2) y x x x = ( sin ln )
= xsinxlnx+ x(sin x)lnx+xsin x(lnx)=sinxlnx+xcosxlnx+sinx:(3) y=[(x - x)° =6(x3 - x)(x3 -x)= 6(x3 - x)(3x2 -1)(4) y'=[3sin(3x +5))' = 3cos(3x+5)(3x+5)= 9cos(3x + 5);(5)y' =[sin2(2x -1)'= 2sin(2x -1)cos(2x -1)(2x -1)= 2 sin(4x -2)(6) =(ev/y = v/. (/3+1)=evx.1(3x+1)2 (3x+1)23eV3x+=ev 1(3x+1)2.322/3x+1(7)y'=[ln(x)] = 3ln(x)[ln(x)=31n(x),() =n(x)Xy=(2lnx)= 2inx In2(8)lnxInx-1= 2 inx In 2In2x;212(9)y=(arccosx2
= + + x x x x x x x x x sin ln (sin ) ln sin (ln ) = + + sin ln cos ln sin x x x x x x ; (3) 3 6 y x x = − [( ) ] 3 5 3 = − − 6( ) ( ) x x x x 3 5 2 = − − 6( ) (3 1) x x x ; (4) y x = + [3sin(3 5)] = + + 3cos(3 5)(3 5) x x = + 9cos(3 5) x ; (5) 2 y x = − [sin (2 1)] = − − − 2sin(2 1)cos(2 1)(2 1) x x x = − 2sin(4 2) x ; (6) 3 1 ( ) x y e + = 3 1 ( 3 1) x e x + = + 1 3 1 2 1 (3 1) (3 1) 2 x e x x − + = + + 1 3 1 2 1 (3 1) 3 2 x e x − + = + 3 1 3 2 3 1 x e x + = + ; (7) 3 2 y x = [ln ( )] 2 2 2 = 3ln ( )[ln( )] x x 2 2 2 21 3ln ( ) ( ) x x x = 6 2 2 ln ( ) x x = ; (8) ln (2 ) xx y = ln 2 ln 2 ln xx xx = ln 2 ln 1 2 ln 2 ln xx x x− = ; (9) 2 y (arccos ) x = 2 1 2 2 1 x x = − −