21[x/ /x2 _ 4(10) y'=(erctan Fy = ercan F (arctan /x)earctan Vr1= earctan x:(V5)1+(Vx)2 /x(1+x)(1)将方程y~cosx=xsin3x两端同时对*求导数得2y.y'cosx-y? sin x=2xsin3x+3x cos3xy=3x cos3x+2xsin3x+y'sinx(2ycosx±0),所以2ycosx(12)将方程cos(xy)=X两端同时对*求导数得-sin(xy)·(xy)'=1,即-sin(xy)-(y+ xy) = 1,所以_1+ ysin(x)(x sin(xy) 0)y=-xsin(xy)(13)将方程y=1+xe’两端同时对*求导数得y'=0+e"+xe'.yeyQ(y+2)y所以-xey2.(14)将方程ysinx-cos(x-y)=0两端同时对*求导数得y'sin x+ ycos x + sin(x- y)(1- y)= 0y'= ycosx+sin(x- (sin(x- y)* sin x):sin(x -y)-sin x所以
2 2 1 2 2 1 x x = − − − 2 2 x x 4 = − ; (10) arctan ( ) x y e = arctan (arctan ) x = e x arctan 2 1 ( ) 1 ( ) x e x x = + arctan 2 (1 ) x e x x = + ; (11) 将方程 2 2 y x x x cos sin 3 = 两端同时对 x 求导数得 2 2 2 cos sin 2 sin 3 3 cos3 y y x y x x x x x − = + , 所以 2 2 3 cos3 2 sin 3 sin 2 cos x x x x y x y y x + + = (2 cos 0) y x ; (12) 将方程 cos( ) xy x = 两端同时对 x 求导数得 − = sin( ) ( ) 1 xy xy , 即 − + = sin( ) ( ) 1 xy y xy , 所以 1 sin( ) ( sin( ) 0) sin( ) y xy y x xy x xy + = − ; (13) 将方程 1 y y xe = + 两端同时对 x 求导数得 0 y y y e xe y = + + 所以 ( 2) 1 2 y y y e e y y xe y = = − − ; (14) 将方程 y x x y sin cos( ) 0 − − = 两端同时对 x 求导数得 y x y x x y y sin cos sin( )(1 ) 0 + + − − = , 所以 cos sin( ) sin( ) sin y x x y y x y x + − = − − (sin( ) sin ) x y x − ;
-x(15)将J1+x2两端同时取自数有-xIny=I-[In(1-x)-In(1 + x2)1 ,=lnx+-两端同时对求导数得2-[ln(1- x)- In(1+ x2)]2Xy111x11+x2x2(1- x)y11-Xx所以v2(1- x)1+xx+x2-3x-x31- x2(1- x)(1+ x2) V1+x2x(x? + 1)(16)将yV(x2-1)两端同时取自数有x(x2 +1)Iny=ln,[In x(x2 +1)-In(x2 -1)"](x?-1)22[ln x + In(x? + 1)- 2In(x? -1)]32x4x11将上式两端同时对"求导数得3x3(x +1)33(x2 -1)y所以x* +6x2+1x(x2 +1)V(x2 -1)23x(1- x*)(17) 将=2xvk两端同时取自数有
(15)将 2 1 1 x y x x − = + 两端同时取自数有 2 1 ln ln 1 x y x x − = + 1 2 ln [ln(1 ) ln(1 )] 2 = + − − + x x x , 两端同时对 x 求导数得 1 1 1 2 [ln (1 ) ln (1 )] 2 y x x y x = + − − + , 2 1 1 1 2(1 ) 1 x y y x x x = − − − + 所以 2 2 1 1 1 1 2(1 ) 1 x x y x x x x x − = − − + − + 3 2 2 2 3 1 2(1 )(1 ) 1 x x x x x x − − − = − + + ; (16) 将 2 3 2 2 ( 1) ( 1) x x y x + = − 两端同时取自数有 2 3 2 2 ( 1) ln ln ( 1) x x y x + = − 1 2 2 2 [ln ( 1) ln( 1) ] 3 = + − − x x x 1 2 2 [ln ln( 1) 2ln( 1)] 3 = + + − − x x x 将上式两端同时对 x 求导数得 2 2 1 1 2 4 3 3( 1) 3( 1) x x y y x x x = − − + − , 所以 4 2 2 3 4 2 2 6 1 ( 1) 3 (1 ) ( 1) x x x x y x x x + + + = − − ; (17) 将 2 x y x = 两端同时取自数有
In y=In(2x)=In2 +lnx=In2+/xln x将上式两端同时对*求导数得1Inx+Vx.!2(=ln x+1)A2/x2yxx-y'=x*-2(2+Inx),所以(18)将方程y=(1+x)sin*两端取自然对数得lny=ln(1+x)sinx,即In y= sin x. In(1 + x?),两端同时对求导数得-. y'= cos x.In(1 + x)+ sin x.(2x)+cosxIn(1+x)+ 2xsinxy' =(1+x2)sinx1+ x22.求下列函数的二阶导数(2) y=eVx(1) y=xee(4) y=lnsinx(3)y:x(5) y=x :(6) y=sin(x+y)解:(1) y'=(xet") =er +xer(2x)=er.(1+2x*),y'=2xe (1+2x*)+4xe =2e* (3x+2x):(2) y'=(e)=ev.l,2+ev(-1x)=(x-1)evy'=er.!++.l+?+4x/x4x-(3)x2A
ln ln(2 ) x y x = ln 2 ln ln 2 ln x = + = + x x x 将上式两端同时对 x 求导数得 1 2 1 1 1 1 ln ( ln 1) 2 2 y x x x x y x x − = + = + 所以 1 2 (2 ln ) x y x x − = + ; (18) 将方程 2 sin (1 ) x y x = + 两端取自然对数得 2 sin ln ln(1 ) x y x = + ,即 2 ln sin .ln(1 ) y x x = + , 两端同时对 x 求导数得 2 2 1 1 cos .ln(1 ) sin . (2 ) 1 y x x x x y x = + + + , 2 sin 2 2 2 sin (1 ) cos ln(1 ) 1 x x x y x x x x = + + + + . 2. 求下列函数的二阶导数. (1) 2 x y xe = ; (2) x y e = ; (3) x e y x = ; (4) y x = ln sin ; (5) x y x = ; (6) y x y = + sin( ) . 解: (1) 2 ( ) x y xe = 2 2 2 2 (2 ) (1 2 ) x x x = + = + e xe x e x , 2 2 2 2 3 2 (1 2 ) 4 2 (3 2 ) x x x y xe x xe e x x = + + = + ; (2) ( ) x y e = 1 2 1 2 x e x − = , 1 1 3 2 2 2 1 1 1 ( 1) ( ) 2 2 4 4 x x x x e y e x x e x x x − − − − = + − = ; (3) ( ) x e y x = 2 2 1 1 ( ) x x e x e x e x x x − = = −
2x++x(4)y=(lnsinx)=(sinx)':cosx=cotx,sinxsinxy"= (cot x)'= -csc2 x ;(5)将方程y=x"两端取自然对数得lny=xlnx,再将方程lny=xlnx两端同时对×求导数得y'=lnx+1,故y'=y(lnx+1),则y" = y'(lnx+1)+y(lnx+1)= y(lnx+1)+ yX-=y[(ln x+1)? +== y(lnx+1)? +y.-X(Inx+1) +1(6)将方程y=sin(x+y)两端同时对*求导数得y'= cos(x+ y) (I+ y')cos(x+ y)=-于是1-cos(x+ y)将y'=cos(x+y)(1+y)两端同时对*求导数得y" = -sin(x+ y)(1+y)? + cos(x+y).y"cos(x+ y)-sin(x + y)[1 +J"= =sin(x+ y)(1+y)?[-cos(x+y)于是1- cos(x+y)1- cos(x+y)sin(x+y)[cos(x + y) -1]°3.验证y=esinx满足关系式y"-2y'+2y=0
2 2 2 3 3 1 1 1 2 2 2 ( ) ( ) ( ) x x x x x y e e e x x x x x − + = − + − − = ; (4) y x = (ln sin ) 1 1 (sin ) cos cot sin sin x x x x x = = = , 2 y x x = = − (cot ) csc ; (5)将方程 x y x = 两端取自然对数得 ln ln y x x = ,再将方程 ln ln y x x = 两端同时对 x 求导数得 1 y x ln 1 y = + ,故 yyx = + (ln 1) , 则 1 y y x y x y x y (ln 1) (ln 1) (ln 1) x = + + + = + + 2 2 1 1 y x y y x (ln 1) [(ln 1) ] x x = + + = + + 2 1 (ln 1) x x x x = + + ; (6) 将方程 y x y = + sin( ) 两端同时对 x 求导数得 y x y y = + + cos( ) (1 ) , 于是 cos( ) 1 cos( ) x y y x y + = − + , 将 y x y y = + + cos( ) (1 ) 两端同时对 x 求导数得 2 y x y x y y = − + + + + sin( )(1 y ) cos( ). , 于是 2 sin( )(1 ) 1 cos( ) x y y y x y − + + = − + cos( ) 2 sin( )[1 ] 1 cos( ) 1 cos( ) x y x y x y x y + − + + − + = − + 3 sin( ) cos( ) 1 x y x y + = + − . 3. 验证 sin x y e x = 满足关系式 y y y − + = 2 2 0