习题12.2多元复合函数的求导法则1. 利用链式规则求偏导数:,=,求(1) 2=tan(31+2x2 -y2), x=,dt(2)z=e-2y,x=sint, y=,求些di3(3) w=e(y-2)求dwy=asinx,z=cosx,dxa2 +1求兰(4) 2='lnv, u=_,V=3x-2y,axyJ(5) u=er,==y'sinx,求器%axay(6) w=(x+y+)sin(+* +y*+2), x=le', y=e', z=e*",求w,was'ata?z(7) ≥=x*+y +cos(x+y), x=u+v,y=aresinv,求%,Ou'Ovou以下假设f具有二阶连续偏导数。(8)=),求%*axayxoyay;y)(9)u=f(x +y +2),求uuuuuaxOyOz"Ox?"axoy求(10)w=f(x,y,z),x=u+v,y=u-v,z=w,OuOvOuov解(1)记u=3t+2x2-y2,则dzdz dudzouou dxoudydtdudtduataxdtydt11-]sec?u=[3 + 4x·(2)-2g2i4)sec (2t=(2- --dzOz dx Oz dyy= er-2y cost-2er-2y.3 =2(cost-6f°),(2)dtax dtoy dtd?zdzd=(cost -6t3)9(cost - 6t°) = esint-2r [(cost - 6t°) - sin t -12t] 。dt?dtdt1
习题 12.2 多元复合函数的求导法则 1. 利用链式规则求偏导数: (1) y t t z = t + x − y x = , = 1 tan(3 2 ), 2 2 ,求 t z d d ; (2) z = ex−2 y , x = sin t, y = t 3 ,求 2 2 d d t z ; (3) 1 ( ) 2 + − = a e y z w ax , y = a sin x, z = cos x,求 x w d d ; (4) v x y y x z u ln v, u , 3 2 2 = = = − ,求 y z x z ∂ ∂ ∂ ∂ , ; (5) , ,求 2 2 2 x y z u e + + = z y sin x 2 = y u x u ∂ ∂ ∂ ∂ , ; (6)w = (x + y + z)sin(x 2 + y 2 + z 2 ),x = tes ,y = et ,z = es+t ,求 t w s w ∂ ∂ ∂ ∂ , ; (7) z = x 2 + y 2 + cos(x + y), x = u + v, y = arcsin v ,求 v u z u z ∂ ∂ ∂ ∂ ∂ 2 , ; 以下假设 f 具有二阶连续偏导数。 (8) ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ = y x u f xy, ,求 2 2 2 , , , y u x y u y u x u ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ; (9)u = f (x 2 + y 2 + z 2 ) ,求 x y u x u z u y u x u ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 2 2 2 , , , , ; (10)w = f (x, y,z), x = u + v , y = u − v, z = uv,求 u v w v w u w ∂ ∂ ∂ ∂ ∂ ∂ ∂ 2 , , 。 解 (1) 记u t = + 3 2x 2 − y 2 ,则 dz dt = ( ) dz du dz u u dx u dy du dt du t x dt y dt ∂ ∂ ∂ = + + ∂ ∂ ∂ 2 2 1 1 [3 4 ( ) 2 ]sec 2 x y u t t = + ⋅ − − ⋅ = 2 3 2 4 2 (2 )sec (2t ) t t − + 。 (2) dz dt = 2 2 2 cos 2 3 (cos 6 ) z dx z dy x y x y e t e t z t x dt y dt ∂ ∂ − − + = − ⋅ = − ∂ ∂ 2 t , 3 2 2 2 sin 2 2 2 2 (cos 6 ) (cos 6 ) [(cos 6 ) sin 12 ] d z dz d t t t t z t t e t t t t dt dt dt − = − + − = − − − 。 1
dw_Owowdy,Owdz(3)dxaxay dxazdxear- ae"(y-2)(-sin x)acosxα2 +1α+1α2 +1=e"sinx。dz_=ouOzdy=2ulnv.1+㎡(4).3dxou axovdxyy3.x224 1(3x-2)+y(3x-2y)yuu=2ulnv(-x(-2)ay"u ayov ay山12x22x2In(3x-2)-P(3x-2)y3Ouou,duoz=u-2x+u.2z.y.cosx(5)oxOxdzox=e++ys*(2x+2y* sinxcos x)u_udu=u-2y+u.2.2ysinxayayd y=e+y+y'si*(2y+4y* sin? x)。(6)记u=x?+y?+z?,v=x+y+z。则Ow_OwaxOwayOwozasaxasayasazas=x(sinu+2xvcosu)+O(sinu+2yvcosu)+z(sinu+2zvcosu)=te'(sinu+2xvcosu)+es+(sinu+2zvcosu)Ow_ Ow OxOw dyOw Ozatax atay atazat=e'(sinu+2xycosu)+y(sinu+2yvcosu)+z(sinu+2zvcosu)=e'(sinu+2xvcosu)+e'(sinu+2yvcosu)+es**(sinu+2zvcosu)。2
(3) dw w w dy w dz dx x y dx z dx ∂ ∂ ∂ = + + ∂ ∂ ∂ 2 2 2 ( ) cos ( sin ) 1 1 1 ax ax ax ae y z e e a x x a a a − = + ⋅ − ⋅ − + + + sin ax = e x。 (4) dz z u z dv dx u x v dx ∂ ∂ ∂ = + ∂ ∂ ∂ 2 1 2 ln 3 u u v y v = ⋅ + ⋅ 2 2 2 2 3 ln(3 2 ) (3 2 ) x x x y y y = − + x − y , z z u z v y ∂ y u y v ∂ ∂ ∂ ∂ ∂ = + ∂ ∂ ∂ ∂ 2 2 2 ln ( ) ( 2) x u u v y v = ⋅ − + ⋅ − 2 2 3 2 2 2 ln(3 2 ) (3 2 ) x x x y y y = − − − x − y 。 (5) u u du z x x dz ∂ ∂ = + ∂ ∂ x x ∂ ∂ 2 = ⋅ u x2 2 + u z ⋅ ⋅ y cos x 224 2 sin 4 (2 2 sin cos ) x y y x e x y x + + = + u u du z y y dz y ∂ ∂ ∂ = + ∂ ∂ ∂ = ⋅ u y 2 2 + u ⋅ z⋅ 2y sin x 224 2 sin 3 2 (2 4 sin ) x y y x e y y + + = + x 。 (6) 记u = x 2 + y 2 + z 2,v = x + y + z 。则 w w x w y w s x s y s z ∂ ∂ ∂ ∂ ∂ ∂ ∂ = + + ∂ ∂ ∂ ∂ ∂ ∂ ∂ z s = x(sin u + 2xv u cos ) + + 0(sin u 2yv u cos ) + + z(sin u 2zv cosu) (sin 2 cos ) (sin 2 cos ) s s t te u xv u e u zv u + = + + + w w x w y w t x t y t z ∂ ∂ ∂ ∂ ∂ ∂ ∂ = + + ∂ ∂ ∂ ∂ ∂ ∂ ∂ z t (sin 2 cos ) (sin 2 cos ) (sin 2 cos ) s = + e u xv u + y u + yv u + z u + zv u (sin 2 cos ) (sin 2 cos ) (sin 2 cos ) s t s t e u xv u e u yv u e u zv u + = + + + + + 。 2
+=[2x-sin(x+)]-1+[2 -sin(x+)]-0(7) OuaxQuQyOu=2(u+v)-sin(u+v+arcsinv),=_ -()= 2-cos(u+v+arcsin v)(1+OvouOyou11(8)记v=y,w=,则yOu_OuovOuOwxy,二=f+2OwaxaxOv axyOu_OuOvOuOw [ ()=OwayQyav ayVau_a(uaxoyax ay1..x12三)()川P//2y.V17ou_uaye-ay ay(xo1a2xy1bj(9)记v=x +y +2?,则u_f=2f(x ++2),axdv axu_=2f(x++),aydv yu=2f(x+y+2),Ozdv Oz3
(7) z z x z y u ∂ ∂ = − [2x x sin( + y)]⋅1+[2y − sin(x + y)]⋅0 u x u y ∂ ∂ ∂ ∂ = + ∂ ∂ ∂ ∂ = + 2(u v) − sin(u v + + arcsin v), 2 ( ) z z v u v u ∂ ∂ ∂ = = ∂ ∂ ∂ ∂ 2 1 2 cos( arcsin )(1 ) 1 u v v v − + + + − 。 (8) 记 , x v xy w y = = ,则 u u v u w x v x w x ∂ ∂ ∂ ∂ ∂ = + ∂ ∂ ∂ ∂ ∂ = 1 2 1 , , x x yf xy f xy y y y ⎛ ⎞ ⎛ ⎞ ⎜ ⎟ + ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ , u u v u w y v y w ∂y ∂ ∂ ∂ ∂ ∂ = + ∂ ∂ ∂ ∂ 1 2 2 , , x x x xf xy f xy y y y ⎛ ⎞ ⎛ ⎞ = − ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ , 2 ( ) u u x y x y ∂ ∂ ∂ = ∂ ∂ ∂ ∂ 1 2 2 2 1 2 1 , , , , x x x x f xy f xy x f xy f xy y y y x y y x y ⎛ ⎞ ⎛ ⎞ ∂ ∂ ⎛ ⎞ ⎛ ⎞ = − ⎜ ⎟ ⎜ ⎟ + ⎜ ⎟ − ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ ∂ ∂ ⎝ ⎠ ⎝ ⎠ x = 1 2 2 1 , , x x f xy f xy y y y ⎛ ⎞ ⎛ ⎞ ⎜ ⎟ − ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ −⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ + y x f xy y x y x xyf xy, , 11 3 22 , 2 2 ( ) u u y y y ∂ ∂ ∂ = ∂ ∂ ∂ 3 2 2 1 2 2 , , , x x x x f xy x f xy f xy y y y y y y ⎛ ⎞ ∂ ∂ ⎛ ⎞ ⎛ ⎞ = + ⎜ ⎟ ⎜ ⎟ − ⎜ ⎟ ⎝ ⎠ ∂ ∂ ⎝ ⎠ ⎝ ⎠ x y 2 3 2 11 2 , , x x x f xy x f xy y y y ⎛ ⎞ ⎛ ⎞ = + ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ +⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − y x f xy y x y x f xy y x , , 2 4 22 2 2 12 2 。 (9) 记v x = +2 2 y + z 2 ,则 u df v x dv x ∂ ∂ = ∂ ∂ 2 2 2 = + 2 ' xf x( y + z ), u df v y dv y ∂ ∂ = ∂ ∂ 2 2 2 = + 2 ' yf (x y + z ) , u df v z dv z ∂ ∂ = ∂ ∂ 2 2 2 = + 2 ' zf (x y + z ) , 3
au=2F(x2 +y2 +23) +2xf(x? +y2 +2)ax2ax=2f(x2+y+2) +4x2 f"(x2 +y2 +z2),ou=2y%(*+y+2)axay2yax=4xyf"(x2 +y2 +2)。Ow_Owax+Oway+Ow Oz(10)=f +f, +y.,ouaxOuayQuOz Ouow_OwaxOwayOwOz=f-f,+u.,avax OvOzOvOyOvaw-0=1.++%OuovOuOyouou"OuaxOuQyOuOzOuxOuQyOuOzOufaxfoyfa+uaxOuyOuazQu=fu+(u+v)fr-fw+(u-v)f+f.+uyf.2.设f(x,j)具有连续偏导数,且f(x,x2)=1,(x,x)=x,求f,(x,x2)。解在等式f(x,x2)=1两边对x求导,有%+%%=(,r)+2对,(xx)=0,axy ax再将f(x,x2)=x代入,即可得到Ss(x,x)=-12°3.设f(x,J)具有连续偏导数,且f(1,1)=1,f,(1,1)=2,J,(1,1)=3。如果p(x)= f(x,f(x,x)),求p(1)。afdy(x)do(=%(x, (x)+解-(x,y(x)dxaxaydx其中4
2 '( ) 2 2 2 2 2 f x y z x u = + + ∂ ∂ 2 2 2 2 ' x f x( y z ) x ∂ + + + ∂ 2 2 2 = + 2 ' f (x y + z ) 4 "( ) 2 2 2 2 + x f x + y + z , 2 u x y ∂ ∂ ∂ 2 2 2 2 ' y f (x y z ) x ∂ = + ∂ + ) 2 2 2 = 4 " xyf (x + y + z 。 (10) w w x w y w z u ∂ ∂ x y f f vf u x u y u z ∂ ∂ ∂ ∂ ∂ ∂ = + + ∂ ∂ ∂ ∂ ∂ ∂ = + + z , w w x w y w z v ∂ ∂ x y f f uf v x v y v z ∂ ∂ ∂ ∂ ∂ ∂ = + + ∂ ∂ ∂ ∂ ∂ ∂ = − + z , 2 w u v ∂ ∂ ∂ x y z z w f f f f u u v u u u ∂ ∂ ∂ ∂ ∂ = = + − + ∂ ∂ ∂ ∂ ∂ x x x yyy z fff x y z fff x y f z x u y u z u x u y u z u ∂∂∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ = +++− − − ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ( ) zzz fff x y z u x u y u z u ∂ ∂ ∂ ∂ ∂ ∂ + + + ∂ ∂ ∂ ∂ ∂ ∂ ( ) ( ) xx xz yy yz z zz = + f u + v f − f + u − v f + f + uvf 。 2. 设 具有连续偏导数,且 , ,求 。 f (x, y) ( , ) 1 2 f x x = f x x x x ( , ) = 2 ( , ) 2 f x x y 解 在等式 f (x, x 2 ) = 1两边对 x 求导,有 2 2 ( , ) 2 ( , ) 0 x y f f y f x x xf x x x y x ∂ ∂ ∂ + = + = ∂ ∂ ∂ , 再将 f x (x, x 2 ) = x 代入,即可得到 2 1 ( , ) 2 f y x x = − 。 3.设 f (x, y)具有连续偏导数,且 f (1,1) = 1, f x (1,1) = 2, 。如 果 f y (1,1) = 3 ϕ(x) = f (x, f (x, x)),求ϕ′(1)。 解 ( ) ( ) ( , ( )) ( , ( )) d x f f dy x x y x x y x dx x y dx ϕ ∂ ∂ = + ∂ ∂ , 其中 4
d()=%(x,)+afy(x)= f(x,x),(x,x) dxaxay由于y()=f(,1)=1,以x=1代入上述等式,得到p(1)= J(1,1)+ f,(1,1)(f,(1,1)+ f,(1,1) =17 。y,其中()具有连续导数,且f()0,求!%14.设2f(x?-y)xoxyoyof(x2 - y)-_2xyf (x - y)Ozy解axaxf(x2-y)f(x?-y)1f(x? -y)1Ozy2y f'(x?-y)ayayf(x?-y)f(2-y)f(x?-y)f2(x2 -y2)直接计算可得11 0z,1 0zx axy ayyf(x2- y)5. 设:=arctan三y=u-v,验证x=u+v,yαzzu-vuv"u?+。证_ax,Oz QyOuaxouyOu1111+|山OzOz Ox, Oz OyOvaxOvdyO111xy+x1x? + y?(xx1+y又由于x+=(u+)2+(u-)2=2u2+2,所以2yOz,Oz u-yQuavu+2x+y?6.设β和具有二阶连续导数,验证(1)u=ye(r-y)满足%+ou_二u;+xaxayy(2)u=0(x-al)+(x+an)满足波动方程=α"uax?at?5
y x( ) = f (x, x), ( ) ( , ) ( , ) dy x f f x x x dx x y x ∂ ∂ = + ∂ ∂ 。 由于 y f (1) = (1,1) =1,以 x =1代入上述等式,得到 '(1) (1,1) (1,1)( (1,1) (1,1)) 17 x y x y ϕ = + f f f f + = 。 4.设 ( ) 2 2 f x y y z − = ,其中 f (t)具有连续导数,且 f (t) ≠ 0,求 y z x y z x ∂ ∂ + ∂ 1 ∂ 1 。 解. z x ∂ = ∂ 2 2 2 2 2 2 2 2 2 2 ( ) 2 '( ( ) ( y f x y xyf x y f x y x f x y ∂ − − − = − − ∂ − ) ) , z y ∂ = ∂ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 ( ) 1 2 ( ) ( ) ( ) ( y f x y y f x y f x y f x y y f x y f x y ∂ − − − = + − − ∂ − − '( ) ) , 直接计算可得 ( ) 1 1 1 2 2 y yf x y z x y z x − = ∂ ∂ + ∂ ∂ 。 5.设 y x z = arctan , x = u + v , y = u − v,验证 2 2 u v u v v z u z + − = ∂ ∂ + ∂ ∂ 。 证 z z x z u x u y ∂ ∂ ∂ ∂ ∂ = + ∂ ∂ ∂ ∂ ∂ y u 2 2 2 2 1 1 1 1 1 2 x y x y y x x x y y ⎛ ⎞ y − = + ⎜ ⎟ − = ⎛ ⎞ ⎛ ⎞ ⎝ ⎠ + + + ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ , z z x z v x v y ∂ ∂ ∂ ∂ ∂ = + ∂ ∂ ∂ ∂ ∂ y v 2 2 2 2 1 1 1 1 1 2 x y x y y x x x y y y + = + = ⎛ ⎞ ⎛ ⎞ + + + ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ , 又由于 2 2 2 2 2 ( ) ( ) 2 2 2 x + = y u + v + u − v = u + v ,所以 z z u v ∂ ∂ + ∂ ∂ 2 2 2y x y = + 2 u v u v 2 − = + 。 6.设ϕ 和ψ 具有二阶连续导数,验证 (1)u = yϕ(x 2 − y 2 )满足 u y x y u x x u y = ∂ ∂ + ∂ ∂ ; (2)u = ϕ(x − at) +ψ (x + at)满足波动方程 2 2 2 2 2 x u a t u ∂ ∂ = ∂ ∂ 。 5