因为C2/x(x)dr=。i(山)=1 所以 这样,就求出了极值函数 1(
Isoperimetric Problem (continued) Variational Formulism of Differential Equation (Approximation Method (Rayleigh-Ritz) Examples Ï C 2 Z 1 0 xJ 2 0 (µix)dx = C 2 2 J 2 1 (µi) = 1 ¤± C = √ 2 J1(µi) ù§Ò¦Ñ 4¼ê yi(x) = √ 2 J1(µi) J0(µix) C. S. Wu 1lù C©{ÐÚ
因为c2/-(n)dn 所以 这样,就求出了极值函数 yi (a) J1(z)
Isoperimetric Problem (continued) Variational Formulism of Differential Equation (Approximation Method (Rayleigh-Ritz) Examples Ï C 2 Z 1 0 xJ 2 0 (µix)dx = C 2 2 J 2 1 (µi) = 1 ¤± C = √ 2 J1(µi) ù§Ò¦Ñ 4¼ê yi(x) = √ 2 J1(µi) J0(µix) C. S. Wu 1lù C©{ÐÚ
小结 含有待定参量( Lagrange乘子)的 Euler- Lagrange方程,和齐次边界条件组合在 一起,就构成本征值问题 而作为本征值问题,它的解,本征值和本征 函数,有无穷多个 有两个问题需要讨
Isoperimetric Problem (continued) Variational Formulism of Differential Equation (Approximation Method (Rayleigh-Ritz) Examples ( ¹k½ëþ(Lagrange¦f) Euler-Lagrange§§Úàg>.^|Ü3 å§Ò¤¯K ¯K§§)§Ú ¼ê§káõ kü¯KI?Ø C. S. Wu 1lù C©{ÐÚ