习题4.1详解 计算下列不定积分 1.∫x2d 解∫F=+c 2.「a+e')d 解∫I+e)k=x+e'+C 3.∫0-3x2) 解「1-3x2)=x-x2+C 4.∫0+cot2x)k 解∫0+cot2x)t=∫csc2xdk=-cotx+C 5.∫3+x) 解小e+h=+言+c 6∫x 解∫小乐=号+C 7.x+1)2-e] 解jx+2-e=写x2+r2+x-e+C & 解j-e-h=e-4c 1e4 解∫0本-=ja@s-m=n+cax4C
1 习题 4.1 详解 计算下列不定积分 1. x dx 3 2 解 x dx = x + C 3 5 3 2 5 3 2. + e dx x (1 ) 解 e dx x e C x x + = + + (1 ) 3. (1− 3x )dx 2 解 − x dx = x − x + C 2 3 (1 3 ) 4. (1+ cot x)dx 2 解 + x dx = xdx = − x + C (1 cot ) csc cot 2 2 5. + x dx x (3 ) 5 解 x dx x C x x + = + + 5 6 6 1 3 ln 3 1 (3 ) 6. x x dx 解 x x dx = x + C 4 7 7 4 7. x + − e dx x [( 1) ] 2 解 x e dx x x x e C x x + − = + + − + 2 3 2 3 1 [( 1) ] 8. + − dx e e x x 1 1 2 解 dx e dx e x C e e x x x x = − = − + + − ( 1) 1 1 2 9. + dx x x x cos sin cos 2 解 dx x x dx x x C x x x x dx x x x = − = + + + − = + (cos sin ) sin cos cos sin cos sin cos sin cos2 2 2
1 10∫x0+r
2 10. + dx x (1 x ) 1 2 2 解 x C x dx x x dx x x = − − + + = − + arctan 1 ) 1 1 1 ( (1 ) 1 2 2 2 2
习题4.2详解 1.在下列格式的横线上填入适当的系数,使等式成立。解答: 0=5d5x+2) (2)x迹=d(r2+3) ()r=6d-2x) 回 间左=24+到 (6)k=d血x-) (7)sin3xdr=-d(cos3*) (图)es=de) (9)xcosdd(sinx) (0)4-4em2刘 2.填空: ()x迹=dr) (2)xdx=d(x) (3)Id=danx) )子=d- (③)店=d2同 (6)e=de) (7)cos6xdx=d(sin6x) (③)sin5xd=d-5cos写x) 9中子k=rn) (0)d() 3.计算下列不定积分: (∫(2x+3)d 解:j2x+3)=打2x+3)d(2x+3)=2(2x+3+C (2)∫sin3xk 解∫sin3k=,Jsin3d(3x)=-os3x+C
3 习题 4.2 详解 1. 在下列格式的横线上填入适当的系数,使等式成立。解答: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 2 3 2 2 2 2 2 2 1 1 1 5 2 2 3 5 2 1 1 1 3 - 1 2 4 1 6 1 1 5 2 3 6 ln 1 1 1 7 sin 3 - cos 3 8 3 2 1 1 1 9 cos sin 10 arctan 2 2 1 4 2 x x dx d x xdx d x x dx d x dx d x x dx d x dx d x x x xdx d x e dx d e x x dx d x dx d x x = + = + = − = − = + = − = = = = + 2. 填空: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 2 3 2 4 4 1 1 1 ( ) 2 ( ) 2 3 1 1 1 3 (ln ) 4 ( ) 1 1 5 (2 ) 6 ( ) 4 1 1 1 7 cos 6 ( sin 6 ) 8 sin ( 5cos ) 6 5 5 x x xdx d x x dx d x dx d x dx d x x x dx d x e dx d e x xdx d x xdx d x = = = = − = = = = − ( ) ( ) 2 2 1 1 9 (arctan ) 10 (arcsin ) 1 1 dx d x dx d x x x = = + − 3. 计算下列不定积分: ( ) ( ) 2 1 2 3 x dx + ( ) ( ) ( ) ( ) 2 2 1 1 3 2 3 2 3 2 3 2 3 C 2 6 x dx x d x x + = + + = + + 解: (2 sin 3 ) xdx ( ) 1 1 sin 3 sin 3 3 cos 3 3 3 xdx xd x x C = = − + 解
(B)∫cos2 解jcos本=2eos28=2sim+C 解-字0+)+)C e -e-c A 解=024C 仞 解∫本=nda)=hx+C (周4 解本-品m=邮如+C
4 (3 cos ) 2 x dx cos 2 cos 2sin 2 2 2 2 x x x x dx d C = = + 解 ( ) 2 2 4 1 x dx + x ( ) ( ) 2 2 2 2 2 1 1 ln 1 1 1 x dx d x x C x x = + = + + + + 解 ( ) ( ) 2 2 5 3 x dx x − ( ) ( ) ( ) ( ) 2 2 2 2 2 2 1 1 1 3 3 3 2 2 3 x dx d x C x x x = − = − + − − − 解 ( ) 1 6 1 dx + x ( ) 1 1 1 2 1 C 1 1 dx d x x x x = + = + + + + 解 ( ) ln 7 x dx x ( ) 2 ln 1 ln ln ln C 2 x dx xd x x x = = + 解 ( ) cos 8 sin x dx x ( ) cos 1 sin ln sin sin sin x dx d x x C x x = = + 解 ( ) ( ) 2 1 9 x dx x +
g0可网-c 0) 四-流 ¥流网2,-日产 dx -i(lmlx-I-Ink+2)+C c 2)* 解∫-F点-+anmx+c -In(+)-arctan x+C 4.计算下列不定积分: ()∫xe 解∫e=打e=e+c (2)∫x2sinx'dk 解∫sin=打sind=-cosx+C
5 ( ) ( ) ( ) ( ) 2 1 2 3 2 2 1 1 1 3 x dx x d x x C x + = + + = + + 解 ( ) 2 1 10 4 9 dx + x 2 2 1 1 1 3 1 3 arctan 4 9 6 2 6 2 3 1 2 dx d x x C x x = = + + + 解 ( ) ( )( ) 11 1 2 dx x x − + ( )( ) ( ) ( ) ( )( ) ( ) 1 1 1 1 2 1 1 2 3 1 2 3 1 2 1 ln 1 ln 2 3 1 1 ln 3 2 dx x x dx dx x x x x x x x x C x C x +−− = = − − + − + − + = − − + + − = + + 解 ( ) 2 1 12 1 x dx x − + ( ) ( ) 2 2 2 2 2 2 1 1 1 1 1 arctan 1 1 1 2 1 1 ln 1 arctan 2 x x dx dx dx d x x C x x x x x x C − = − = + − + + + + + = + − + 解 4. 计算下列不定积分: ( ) 2 1 x xe dx 2 2 2 1 1 2 C 2 2 x x x xe dx e dx e = = + 解 ( ) 2 3 2 sin x x dx 2 3 3 3 3 1 1 sin sin cos 3 3 x x dx x dx x C = = − + 解