HHHHHHHHHHHHHHHHHHHHHdf(t)LISF(S)- f(0-)dtd"f() = S[SF(S)- f(0_)I- f'(0_)推广:LIdt?= S2F(S)- Sf(0_) - f'(0_)dnf(t)= S"F(S)- Sn-I f(0_)- Sn-2 f'(0_)3LIdtn-...- f(" (0)上页下页区回
推广: ] ( ) [ 2 2 dt d f t L [ ( ) (0 )] (0 ) S SF S f f ( ) (0 ) (0 ) 2 S F S Sf f ] ( ) [ n n dt d f t L (0 ) ( ) (0 ) (0 ) ( 1) 1 2 n n n n f S F S S f S f ] ( ) (0 ) ( ) [ SF S f dt df t L
HHHHHHHHHHHHHHHHHHH2.频域导数性质设: LLf(t)I= F(S)dF(S)则: L[-tf (t)=dsaf()e"dt -Jf(t)(-t)e"at证:小-= L[-tf (t)]d"F(S)推广: L[t"f(t)I=(-1)dsn上页下页区回
2.频域导数性质 dS dF S L tf t ( ) 则: [ ( )] 0 f (t)e dt ds 证: d st 0 f (t)( t)e dt st L[tf (t)] 设:L[ f (t)] F(S) n n n n dS d F S L t f t ( ) 推广: [ ( )] (1)
HHHHHHHHHHHHHHHHHHHHHHHdF(S)L[-tf (t)]=ds例: LIte(0)1-)-d(n)-TSn!例2: L[t"(t)] =(-1)ds(n)Syn+i1d例3: LIte-"|= - ds(S+a)? s+a上页返回下页
) 1 ( dS S d 例1:L[t (t)] dS dF S L tf t ( ) [ ( )] 2 1 S ) 1 ( 1) ( ( ) ( ) dS S d n n n 2 L[t (t)] n 例 : 1 ! n S n ) 1 ( dS S a d 3 [ ] at 例 :L te 2 ( ) 1 S a
HHHHHHHHHHHHHHHHHHHHHH三、积分性质设: LLf(t)I= F(S)则: LU' f(t)dt)=F(S)S证:0)-(0)dtd (0dt)L[f (t)I = L[dt :F(S)= sLIf' f(t)dtI-J, f(t)dtt=0 (n)dl-_F(S)S上页下页区回
三、积分性质 ( ) 1 [ ( ) ] 0 F S S L f t dt t 则: [ ( )] [ ( ) ] 0 t f t dt dt d L f t L F(S) 0 0 0 [ ( ) ] ( ) t t t sL f t dt f t dt t f t dt dt d f t 0 证: ( ) ( ) 设:L[ f (t)] F(S) ( ) 1 [ ( ) ] 0 F S S L f t dt t
HHHHHHHHHHHHHHHHHHHHHHH例14-4 利用积分性质求函数 f(t)=t 的象函数解:由于f(t)=t=[ε()d(0)1-Le()d-—e(0)-S2: t = 2f'tdt推广:L[t?]=L(t1= L(2], td1=2 1_ 2$3Sn!推广: L[t"]=n+1S上页下页区回
2 0 0 1 [ ( )] 1 [ ( )] [ ( ) ] ( ) ( ) 14 4 ( ) s L t s L f t L d f t t d f t t t t 解:由于 例 利用积分性质求函数 的象函数。 3 2 2 [ ] s 推广:L t t t tdt 0 2 2 0 3 2 [ ] 2 [ ] [2 ] 2 s s L t L t L tdt t 1 ! [ ] n n s n 推广:L t