1.1数环和数域 研究数学问题常常需要明确规定所考虑的数的 范围,学习数学也是如此。 比如,先学习自然数,然后整数,再正有理数、 有理数、实数、复数。再比如讨论多项式的因式分 解、方程的根的情况,都跟数的范围有关
文件格式: PPT大小: 300.5KB页数: 10
对称多项式是多元多项式中常见的一种,也是一 类比较重要的多元多项式,它的应用比较广泛,对称 多项式的来源之一以及它应用的一个重要方面,是一 元多项式根的研究,下面我们从一元多项式的根与系 数的关系谈起
文件格式: PPT大小: 522KB页数: 20
前面介绍了一元多项式的基本性质,但是除了 一元多项式外;还有含多个文字的多项式,即多元 多项式,如x2-y2+2xy,x3+y3+3x2y+3xy2 下面简单介绍有关多元多项式的一些概念
文件格式: PPT大小: 527KB页数: 20
本节讨论有理数域上多项式的可约性,以及如 何求Q上多项式的有理根,由于f(x)与qf(x)在 Q[x]上的可约性相同。因此讨论f(x)在Q上的可约 性可转化为求整系数多项式在Q上的可约性
文件格式: PPT大小: 457KB页数: 15
一、C上多项式 对于F[x]上的多项式f(x),它在F上未必有根, 那么它在C上是否有根? 定理1.8.1(代数基本定理): 每一个次数大于零的多项式在复数域上至多有 个根。 定理1.8.2:
文件格式: PPT大小: 444KB页数: 16
一、多项式函数 1.定义:设f(x)=a+ax+…+anxn∈F[x],对 Vc∈F,数f(c)=a+ac++anc∈F称为当 x=c时f(x)的值,若f(c)=0,则称c为f(x)在 F中的根或零点。 2.定义(多项式函数):设f(x)∈F[x],对 Vc∈F,作映射f:
文件格式: PPT大小: 566KB页数: 17
定义1:不可约多项式p(x)称为f(x)的k重因式 (kEN),如果p(x)f(x)而p(x)f(x) 当k=1时,p(x)就称f(x)的单因式, 当k>1时,p(x)称为f(x)的重因式。 如果f(x)的标准分解式为:
文件格式: PPT大小: 458KB页数: 13
在中学代数里我们学过因式分解,就是把一个 多项式逐次分解成一些次数较低的多项式乘积。在 分解过程中,有时感到不能再分解了也就认为它不 能再分了,但是当时没有理论根据,到底能不能再 分下去?
文件格式: PPT大小: 457KB页数: 14
一、两个多项式的最大公因式 定义1:f(x),g(x),h(x)∈F[x] 若h(x)g(x)hx)f(x) 则h(x)是f(x),g(x)的一个公因式。 例如h=x-1是f=x3-x,g=x3-x2-x+1 的一个公因式
文件格式: PPT大小: 465KB页数: 13
在第二章中,我们讨论了一 维随机变量函数的分布,现在我 们进一步讨论: 当随机变量X,X2,…,X的联合分布 12 已知时,如何求出它们的函数
文件格式: PPT大小: 3.27MB页数: 30
©2025 mall.hezhiquan.com 和泉文库
帮助反馈侵权