教学目的 定义在测度空间上的函数可以自然产生出各种各样的集.为 用测度论的方法研究这个函数, 特别是在定义积分时, 必须要求这些集是可 测的. 由此产生了可测函数的概念.本节将给出可测函数的定义并讨论其基 本性质
文件格式: PDF大小: 204.16KB页数: 9
1. 设 µ 是环R 上的有限可加测度, 即 µ 是R 上的非负值集函数满足 µ(∅) = 0 和有限可加性. 证明若 µ 满足次可数可加性, 则 µ 是F 上的测度
文件格式: PDF大小: 147.22KB页数: 4
教学目的 本节利用§2.2 中一般测度的构造方法, 构造一个重要的测度, 即欧氏空间 n R 上的 Lebesgue 测度. Lebesgue 测度的建立, 为定义 Lebesgue 积 分打下基础. 本节要点 利用§2.2 一般测度的构造方法,可以较快的构造出 Lebesgue 测 度. Lebesgue 测度不仅具有抽象测度具有的基本性质, 而且还具有一些特有的 性质,如利用开集或闭集的逼近性质等. Lebesgue 可测集包含了常见的一些集
文件格式: PDF大小: 220.19KB页数: 10
教学目的 本节讨论如何将环 R 上的测度延拓到 R 生成的σ -代数上 去. 这是定义测度常用的方法. 下一节将用这个方法定义重要的 Lebesgue 测 度. 本节要点 本节所述测度的延拓过程思路较复杂, 论证较繁难. 应注意 讲清主要思路, 定理的证明应注意交代主要思想
文件格式: PDF大小: 208.64KB页数: 10
我们知道 Riemann 积分的几何意义是曲边梯形的面积. 为在欧氏空间空间 n R 上推广 Riemann 积分的理论, 我们必须把象长度, 面积和体积等概念推广到 n R 中的更一般的集上 去. 本章将要定义的 n R 上的 Lebesgue 测度就是长度, 面积和体积等概念推广
文件格式: PDF大小: 169.12KB页数: 5
1.证明以下各式 (1). AUB=(A B). (2)..-UB, =UN (A,,)
文件格式: PDF大小: 152.31KB页数: 5
1. 设 E 是 1 R 中一族(开的、闭的、半开半闭的)区间的并集. 证明 E 是 Lebesgue 可测集. 2. 设 f 是 1 R 上有界的单调增加函数. 证明 f 在 1 R 上几乎处处可导并且 f ′在 1 R 上 L 可积
文件格式: PDF大小: 130.17KB页数: 3
教学目的介绍绝对连续函数概念及性质,证明联系微分与积分的牛 顿莱布尼兹公式 教学要点绝对连续函数,不定积分,牛顿莱布尼兹公式 定义1设f(x)是定义在[a,b]上的实值函数.若对任意>0,存在δ>0,使得对 [a,b]上的任意有限个互不相交的开区间{ab),当(b-a1)<时,成立
文件格式: PDF大小: 158.42KB页数: 5
在引言中我们已经提到, Riemann 积分在处理连续函数或者逐段连续函数时, 在计算一 些几何和物理的量时它是很有用的. 但它也存在一些缺陷, 使得Riemann积分在处理分析数 学中的一些问题时显得不够有力. 因此需要建立新的积分的理论. 二十世纪初, Lebesgue 建 立了一种新的积分理论. 新的积分理论消除了上述缺陷, 并且包含了原有的Riemann积分理 论. 这就是本章将要介绍的 Lebesgue 积分理论. 由于现代数学的许多分支如概率论
文件格式: PDF大小: 201.83KB页数: 8
在以下各题中, 可测集, 可测函数和测度, 除题目中已有说明的外, 都是关于某一给定 的可测空间(X, F ) 或测度空间(X, F ,µ) 的
文件格式: PDF大小: 129.72KB页数: 3
©2025 mall.hezhiquan.com 和泉文库
帮助反馈侵权