第六章常微分方程 6-3高阶线性方程 6-3-1高阶线性常系数方程的解 6-3-2 Euler方程 第二十三讲高阶线性常系数阶线性方程 6-3-1高阶线性常系数齐次方程的解 考察n阶线性常系数齐次方程 d x dx d +am+.+ax=o dr dt d t 其中a1,an为实常数 或记成 L(Dx=o 由上一段的讨论知道方程L(Dx=0在区间(-∞,+∞)有n个线性无关解
文件格式: DOC大小: 586KB页数: 9
第六章常微分方程 6-2高阶线性方程 6-2-1线性方程解的结构 6-2-2高阶线性常系数方程的解 6-2-3 Euler方程 第二十二讲高阶线性方程(一) 课后作业: 阅读:第六章6-1pp.189194 预习:第六章6-2pp.194199 作业题:p.199习题21,(2),(4);2;3,(2) 引言: n阶线性微分方程的一般形式为
文件格式: DOC大小: 301.5KB页数: 6
第六章常微分方程 附加条件 y(a)=yu,y(b)=y2 称为边值条件( boundary condition) 满足微分方程,并且适合定解条件的解称为微分方程的特解 (special solution) 微分方程的存在唯一性定理 存在唯一性定理:对一阶初值问题:=f(xy ,若二元函数 y(x0) f(x,y)在矩形D={(x,y):x-x0Ay-y0B}连续, 且偏导数(xy存在并有界则存在正数h,使得上述初值问题 在区间[x。-h,x+h上存在有唯一的解 证明思路:
文件格式: DOC大小: 389.5KB页数: 7
第六章不定积分 6-2不定积分方法 6-2-1变量置换法 凑微分法是通过局部的积分,即a(x)ldx=dh(x),将欲求的积分 ∫/(x)向己有的积分公式f'x)(x)=F((x)+c转化 是实际上是作了一个变量置换:u=l(x),将 f(xdx= F(u(x))u(x)dx= F(u)du 如果凑微分目标不明,亦可先用变量置换先化简被积分式子,即 引进新的自变量x=(1),将积分 f(x)dx= f((O)'(o)dr 如果能够求出函数f(()(口)的原函数G(1),并且反函数 t=g-(x)存在,于是就得到不定积分 f(x)dx= f(o(D))o'(o)dt=G(o(x)+c
文件格式: DOC大小: 590.5KB页数: 15
第六章不定积分 CThe indefinite integration 6-1原函数和不定积分 6-1-1原函数概念及性质 6-1-2不定积分概念及性质 5-1-3基本积分表及凑微分法 6-2不定积分方法 6-21变量置换法 6-2-2分部积分法 63有理函数的积分 6-3-1最简分式的积分 6-3-2有理函数的积分 6-4其他可积成有限形式的函数类 6-4-1三角有理式的积分 第十四讲原函数及不定积分 课后作业: 阅读:第六章61:pp206-210;6.2:p2ll-214 预习:第六章62:pp214-216;63:pp218-22:6.4:pp224-230 练习pp.210-21:2习题61 复习题全部;习题1;2;3(1)-(8)
文件格式: DOC大小: 503.5KB页数: 8
第七章定积分 The definite integration 习题讨论 题目: ayx-b 1,计算1= -dx. (x-b)2+a2 2,计算m=(n)dx,其中n,m为自然数。 0 3,计算J=1 --dx,其中x是x的整数部分。 sinx sinx 4,一研究1= (+,= dx,p>0的敛散性 +sinx 解答: aypx-b
文件格式: DOC大小: 185KB页数: 3
第六章定积分 (The definite integration) 第十六讲定积分的计算方法 课后作业: 阅读:第六章6.4,6.5,6.6:pp16--193 预习:第七章7.1,7.2,7.3:pp9--210. 练习pp.182-184:习题6.4:1;2;3,7,8中的单数序号小题;11; 17;20 p.16-188习6.5:12;3,中的单数序号小题;4;6; 8;9;11;24;26;27 作业pp.182-184:习题6.4:3,中的双数序号小题;5;6; 7,(6),(8),(10);8,(2),(4);9;10;1516;18;21 1720
文件格式: DOC大小: 377.5KB页数: 8
第六章定积分 (The definite integration) 第十五讲 Newton-Leibniz-公式与定积分的计算 课后作业: 阅读:第六章6.:pp6--17 预习:6.4,6.5,6:p176-19 练习pp174176习题6.3:1,7,8中的单数序号小题 作业pp.174176:习题6.3:1,(2),(6)2,(2)4;5;7,(4^,(6),(10) (1)8(,114;1;1720 6-3牛顿(Newton)一莱布尼兹(Leibnitz)公式 6-3-1变上限定积分 (一)变上限积分 设f∈Ra,b,x∈[a,b],F(x)=f(t)dt是定义在[a,b]上 a 的一个函数,称之为变上限积分 这里有一个十分重要的结果:变上限积分总是连续函数
文件格式: DOC大小: 307.5KB页数: 6
第六章定积分 (The definite integration) 第十四讲定积分概念及性质 课后作业: 阅读:第六章6.1,6.2:pp158--166 预习:6.3,6.4:6--182 练习pp.66-16:习题6.2:1,(1),(3)23,(1);4,(1)(3)(5) 5,(1),(5) 作业p.166168:习题6.2:1,(5);3,(2)4,(2),(4),(6); 5,(2),(3),(6);6;7. 6-1定积分概念与性质 6-1-1问题引入 一定积分(Riemann)的背景:两个曲型问题。 (1)求曲线所围的面积: 函数f(x)在有界区间[a,b]非负连续,由Ox轴、直线x=a、 x=b(a
文件格式: DOC大小: 445KB页数: 8
设D是以点A,1),B(-1),C(-1,-1)的三角形,则 √x2+3y2+1)si(xy)+2dy=(A)(中) (A)4.(B)2.(C)1.(D)0 2.设球体x2+y2+z2≤2az(a>0)中每点的质量密度与该点 到坐标原点的距离的平方成反比,则该球体的质量M与质心x坐标X为 (中) (A)M=2ka, X X=-a (C)M=2kma, x=la. (D) M=kma, x=Ia 3.设D={(x,y)∈R2x2+y221>0,f(x,y)在D上连续,在D内可微, f(0,0)=1,D的正向边界为C1。若f(x,y)在D上满足方程 afaf 1 ∫(x,y)
文件格式: DOC大小: 395KB页数: 4
《高等数学》课程教学资源(课件讲稿)第一章 函数与极限_1-3 函数极限西安电子科技大学:《MATLAB及其在电子信息课程中的应用》课程PPT教学课件(讲稿)第六章 在信号与系统中的应用复旦大学:《数学分析》第十四章 曲线积分、曲面积分与场论(14.3)Green公式、Gauss公式和 Stokes公式习题《高等数学》课程教学资源(PPT课件)第3章 微分中值定理与导数的应用 第三节 泰勒公式深圳大学:《概率论与数理统计》课程教学资源(PPT课件讲稿)工程数学第6讲 洛朗级数《高等数学》课程教学资源(PPT课件)Ⅱ_D12_2数项级数及审敛法《大学文科数学》课程PPT教学课件(微积分)第九章 含变化率的方程问题——微分方程浅说 习题课西安石油大学:《数学分析 Mathematical Analysis》课程教学资源_数学分析(2)授课计划同济大学:《高等数学》课程电子教案(PPT课件讲稿)第十一章 习题课广西大学:《概率论与数理统计》课程电子教案(PPT课件)第七章 参数估计 7.1 点估计《高中数学教学》课程资源(PPT课件,人教A版必修第一册)3.2.2函数的奇偶性










