2复变画数与和换 1901 Complex Analysis and Integral Transform 又n=v,l=-v,联立得u=6xy,l=3x2-3y2 故=3x2y+0)=3x2+01(y)=3x2-3y得 (y)=-3y2,(y)=-y3+C故u=3x2y-y3+C 同理可得ν=3xy2-x3+C 由已知等式可知:C1=C,=C
复变函数与积分变换 Complex Analysis and Integral Transform 2 2 又u v u v u xy u x y x y y x x y = = − = = − , , 6 , 3 3 联立得 2 2 2 2 3 ( ) 3 ( ) 3 3 y 故 u x y y u x y x y = + = + = − 由 得 ' 2 3 2 3 ( ) 3 , ( ) 3 y y y y C u x y y C = − = − + = − + 故 v = xy − x +C 2 3 同理可得 3 由已知等式可知:C1 = C2 = C
复变画数与 1901 ex Ana 注若求()则/(=)=3xy-y2+C1+(3x2-x3+C2) 2解析函数f(=)可化为单独变量z表示 如何验证这一结论 3化归技巧一—令y=0,则z=x f(x)=C1+C2-ix32=C-x3 故f(=)=C-3
复变函数与积分变换 Complex Analysis and Integral Transform ( ) ( ) 3 3 1 2 3 3. 0, y z x f x C iC ix C ix f z C iz = = = + − = − = − 化归技巧--令 则 故 ( ) ( ) ( ) 2 3 2 3 1 2 注:1. 3 3 若求f z f z x y y C i xy x C 则 = − + + − + 2. ( ) 解析函数f z z 可化为单独变量 表示 如何验证这一结论?