用命令:bbin,r,rit,s]= regress(,x, alpha) 求出回归系数的点估计值和区间估计,得到回归系数并检验回归模型。命令中r和 rint分别为残差及其置信区间;α是显著水平,默认情况下α为0.05;s是用于检验回 归模型的统计量:(相关系数r2,F,与F对应的概率p),取a=005,F2(8.23)=2.37 越接近,说明回归方程越显著; 其中{F>F(n-k-1)时拒绝H0,F越大,说明回归方程越显著 P<a时拒绝H 当上述三个条件能满足时,回归模型成立。 同样还可以利用 Matlab中的函数 stool直接得到回归模型的各个检验量 回归系数的点估计值及其置信区间 bint 110296501037571127311312289130414913204291|-1088732-1097130,108034 082810081008461 0.05610.0530 [0.0443.,0.0522] 0.1279 [0.12430.1314] 0.0616 [0.05800.0653 05301005160054 0000000012.0011 [-0.1578.0.1554 0.11990.11680.1230] 0.0333 [0.03050.0360] -0.0099 [-0.0127,0.0071 00254-00274-00235 0.1245 [0.12270.1263] 0.12200.194..246 0.1124 0.1148-0.1101 0.0021 0.12160.11850.1246 -0.0189 0.0216-0.0162 0.0025 0.0053,0.0003] 0.0012[00034,0.0009 0.0987 [0.0968,0.1006] 0.2014 -0.2033,-0.1994 7481776673478290132974532137,3818】120603197094121617 -0.0345 -0.0360 -0.1024 -0.1059, ,-0.03291 0.0005 -0.00110.0021 0.2378 [0.23600.2396 0.2433 0.23970.2469] -0.0643.0.0561] 0.2052 [0.20400.2063] -00646 -0.0658,0.0633] -0.0779 -0.0793.0.0765] -00235,0.0181] -0.0411 -0.0439,-0.0383 0.0930 -0.0118 -0.0135,0.0101 -0.0652 -0.0670,0.0635 0.0469 [0.04490.0489 0.0060 [0.00370.0082] [0.06800.0727] 0.0001 -0.0026,0.0028] 0.1449 [0.14230.1476 -0.0070,0.0015] 0.1659 [0.16280.1691 0.076 0.0747,00784 0108,-0.0070 0.0007 -00015,0.0029 这样就得到了各条线路的回归方程如下 l=110.2965+0.0828x1+0.0483x2+0.0530x3+0.11994-0.0254X5+0.1220x6+0.1216x7 -0.0012x8
用命令:[ ]srint,r,bint,b, = ( ,, alphaxyregress ) 求出回归系数的点估计值和区间估计,得到回归系数并检验回归模型。命令中r 和 rint 分别为残差及其置信区间;α 是显著水平,默认情况下α 为 0.05;s 是用于检验回 归模型的统计量: ( 相关系数 2 α ,, 与FFr 对应的概率 p) ,取α =0.05, ( 23,8 =2.37 Fα ) 其中 ( ) ⎪ ⎩ ⎪ ⎨ ⎧ < −−> 0 0 2 , 1, 1 p H knkFF FH r 时拒绝 时拒绝 越大,说明回归方程越显著; 越接近 ,说明回归方程越显著; α α 当上述三个条件能满足时,回归模型成立。 同样还可以利用 Matlab 中的函数 rstool 直接得到回归模型的各个检验量。 回归系数的点估计值及其置信区间: b1 bint1 b2 bint2 b3 bint3 110.2965 [109.3757,111.2173] 131.2289 [130.4149,132.0429] -108.8732 [-109.7130,-108.0334 ] 0.0828 [0.0811,0.0846] -0.0546 [-0.0561,-0.0530] -0.0695 [-0.0711,-0.0679] 0.0483 [0.0443,0.0522] 0.1279 [0.1243,0.1314] 0.0616 [0.0580,0.0653] 0.0530 [0.0516,0.0543] 0.0000 [-0.0012,0.0011] -0.1566 [-0.1578,-0.1554] 0.1199 [0.1168,0.1230] 0.0333 [0.0305,0.0360] -0.0099 [-0.0127,-0.0071] -0.0254 [-0.0274,-0.0235] 0.0868 [0.0851,0.0886] 0.1245 [0.1227,0.1263] 0.1220 [0.1194,0.1246] -0.1124 [-0.1148,-0.1101] 0.0021 [-0.0003,0.0045] 0.1216 [0.1185,0.1246] -0.0189 [-0.0216,-0.0162] -0.0025 [-0.0053,0.0003] -0.0012 [-0.0034,0.0009] 0.0987 [0.0968,0.1006] -0.2014 [-0.2033,-0.1994] b4 bint4 b5 bint5 b6 bint6 77.4817 [76.6734,78.2900] 132.9745 [132.1371,133.8118] 120.6633 [119.7094,121.6171] -0.0345 [-0.0360,-0.0329] 0.0005 [-0.0011,0.0021] 0.2378 [0.2360,0.2396] -0.1024 [-0.1059,-0.0989] 0.2433 [0.2397,0.2469] -0.0602 [-0.0643,-0.0561] 0.2052 [0.2040,0.2063] -0.0646 [-0.0658,-0.0633] -0.0779 [-0.0793,-0.0765] -0.0208 [-0.0235,-0.0181] -0.0411 [-0.0439,-0.0383] 0.0930 [0.0898,0.0962] -0.0118 [-0.0135,-0.0101] -0.0652 [-0.0670,-0.0635] 0.0469 [0.0449,0.0489] 0.0060 [0.0037,0.0082] 0.0703 [0.0680,0.0727] 0.0001 [-0.0026,0.0028] 0.1449 [0.1423,0.1476] -0.0043 [-0.0070,-0.0015] 0.1659 [0.1628,0.1691] 0.0765 [0.0747,0.0784] -0.0089 [-0.0108,-0.0070] 0.0007 [-0.0015,0.0029] 这样就得到了各条线路的回归方程如下: y1=110.2965+0.0828x1+0.0483x2+0.0530x3+0.1199x4-0.0254x5+0.1220x6+0.1216x7 -0.0012x8 6
2=131.2289-0.0546x1+0.1279X20.0000X3+00333x4+0.0868X50.1124x6-0.0189X7+0 0987x8 y3=1088732-00695x1+00616x2-0.1566x3-0.0099X4+0.124x5+0.0021x6-00025X7-0 20l4x8 y4=774817-0.0345x1-0.1024x2+0.2052x3-0.0208x4-00118x5+0.0060x6+0.1449X7+0. 0765x8 y5=1329745+0.0005x1+0.243x2-0.0646X3-0.0411x4-0.0652x5+0.0703x6-0.0043x7-0 0089X8 y6=120633+0.2378x1-0.0602x2-00779X3+0.0930x4+0.0469X5+0.0001x6+0.1659X7+ 0.0007X8 实际上,我们并不知道或者断定随机变量y与一组变量x1…,xk之间确有线性关系 y=B+B1x1+…+Bxk+E只是一种假设,因此,在求出线性回归方程之后,还必须对 求出的线性回归方程同实际观测数据拟合效果进行检验。可提出以下原假设 Ha:B=B1=…=Bk=0 F检验法: F检验法是概率中常用到的检验方法,检验规则为:当显著水平a给定后 >F(k,n-k-1),则拒绝H,认为y与x1…,x4之间显著地有线性关系;否则就接 受H0,认为y与x1…,xk之间线性关系不显著。 r检验 与一元回归情形类似,y与x1,x2…,x线性相关的密切程度也可用回归平方和U在 总平方和L中所占的比例大小来衡量。定义r 为y与x1x2…,x的多元相关系 数或复相关系数 容易证明F检验中的F与r检验中的r有如下关系 F 故用F检验和r检验是等效的。 取a=05,查表得F(8.23)=2.37回归得到的r2,F,P值为 0.99984 F 5861.5 25583 69718 17455 0 0 0
y2=131.2289-0.0546x1+0.1279x2-0.0000x3+0.0333x4+0.0868x5-0.1124x6-0.0189x7+0 .0987x8 y3=-108.8732-0.0695x1+0.0616x2-0.1566x3-0.0099x4+0.124x5+0.0021x6-0.0025x7-0. 2014x8 y4=77.4817-0.0345x1-0.1024x2+0.2052x3-0.0208x4-0.0118x5+0.0060x6+0.1449x7+0. 0765x8 y5=132.9745+0.0005x1+0.2433x2-0.0646x3-0.0411x4-0.0652x5+0.0703x6-0.0043x7-0. 0089x8 y6=120.6633+0.2378x1-0.0602x2-0.0779x3+0.0930x4+0.0469x5+0.0001x6+0.1659x7+ 0.0007x8 实际上,我们并不知道或者断定随机变量 y 与一组变量 之间确有线性关系。 k ,, xx1 L β β β ++++= ε kk y x L x 110 只是一种假设,因此,在求出线性回归方程之后,还必须对 求出的线性回归方程同实际观测数据拟合效果进行检验。可提出以下原假设 H :β = β100 = L = β k = 0 F 检验法: F 检验法是概率中常用到的检验方法,检验规则为:当显著水平α 给定后, 1−α( knkFF −−> 1, ),则拒绝 ,认为 H0 y 与 之间显著地有线性关系;否则就接 受 ,认为 k ,, xx1 L H0 与 之间线性关系不显著。 k ,, xx y 1 L r 检验法: 与一元回归情形类似,y 与 线性相关的密切程度也可用回归平方和U 在 总平方和 中所占的比例大小来衡量。定义 k ,,, xxx 21 L Lyy U Lyy r = 为 y 与 的多元相关系 数或复相关系数。 k ,,, xxx 21 L 容易证明 检验中的 与 F F r 检验中的r 有如下关系: 2 2 1 1 r r k kn F − −− = , 故用 检验和 F r 检验是等效的。 取α =0.05,查表得 Fα ( 23,8 )=2.37 回归得到的 值为: ,, pFr 2 2 r 0.99951 0.99960 0.99987 0.99989 0.99959 0.99984 F 5861.5 7228.7 22352 25583 6971.8 17455 p 0 0 0 0 0 0 7
残差分析,作残差图,利用 Matlab中 coplon(rin)命令 第一条线路的残差图如下 Residual Case Order Plot 005 -0.05 10 15 20 Case Numbe 可以看到其中的有一个区间没有包含0点,如果对此进行调整,可以通过改变a的 大小来实现,当∝=0.03时,就可以看到任何一个区间都包括了0点,但是这样做同时 会让F值变小,不过F值一直远远大于F(8,23) 、阻塞费用和分配方案调整模型的建立 本模型对于阻塞采取两种方式:调整各机组出力或拉闸断开负荷。这种模式实际上是一 种“购回”模式。“购回”模式可描述如下: 研究两个地区(A和B),在它们之间有一个传输路径。设在未制约的情况下对市场结 算的传输潮流为y降低到y 该调整必须有电网运营者通过购买地区B中的功率(增加的发电出力),和销售地区A 中的功率(减少的发电出力)。每个地区中的价格是在一个独立的调节时常中的一条发 电成本(竞价)给出。购电成交的价格高于未制约的价格,而售点价格低于未制约的价 格。于是,这项交易的总阻塞费用为 △y(P-P)
残差分析,作残差图 ,利用 Matlab 中 rcoplot(r,rint)命令 第一条线路的残差图如下 : 可以看到其中的有一个区间没有包含 0 点,如果对此进行调整,可以通过改变α 的 大小来实现,当α =0.03 时,就可以看到任何一个区间都包括了 0 点,但是这样做同时 会让 F 值变小,不过 F 值一直远远大于 ( 23,8 ) Fα 。 二、阻塞费用和分配方案调整模型的建立 本模型对于阻塞采取两种方式:调整各机组出力或拉闸断开负荷。这种模式实际上是一 种“购回”模式。“购回”模式可描述如下: 研究两个地区(A 和 B),在它们之间有一个传输路径。设在未制约的情况下对市场结 算的传输潮流为 降低到 k y Yk −=Δ Yyy kk 该调整必须有电网运营者通过购买地区 B 中的功率(增加的发电出力),和销售地区 A 中的功率(减少的发电出力)。每个地区中的价格是在一个独立的调节时常中的一条发 电成本(竞价)给出。购电成交的价格高于未制约的价格,而售点价格低于未制约的价 格。于是,这项交易的总阻塞费用为: )( z Δ= − ppyF lh 8