du=e'(xcosy+cosy-ysiny)dy+e'(xsiny +siny+ycosy)dx =e*d(xsiny+siny+ycosy-siny)+e'd(xsiny siny+siny+cosy) =d(e'xsiny+e*ycosy), 所以=e*xsiny+e'ycosy+C. f(2)=e'(xcosy-ysiny)+ie'(xsiny+ycosy)+iC xe*(cosy+isiny)-e*y(siny-fcosy)+iC xe"ei+iye"eir+ic=e+i(x+iy)+iC ze*+iC. 因为f(0)=0·e。+C=0,故C=0,于是 f(2)=2e'. 2sinx (3)u=0+e-2c052x f()=0, 4sin2x(e2-e1) 0y(e2·+e2-2cos2x)2 00=00=4cos2x(e2·+e2:-2cos2x)-8sin2x (e2·+e2*-2cos2x)2 d0=4sin2x(e2"+edx+4〔cosx(e2”+e2)-2dy 〔e2"+e-2-2cos2x]2 同(1)题,把对x积分,把v暂且当作参数 eiw-e-11 =- e2+e-2c052x+0(). 于是, 00=2e2-e"y2-2e2+e3Xe2+e-2c0s2x) ay (e2'+ea-2cos2x)3 +p'(y) 25
=4[c0s2x(e2"+e2)-2) (ev+e21-2cos2x)2 +p(y). 把上式与前式比较知m)=C,又由于f()=0, ∴.C=0 ei-e-ir e3n+ez"-2c0s2x· 所以fe)=u+io=2sin2x-i(ee2y e2m+e-21-2c0s2x =ctgz、 读者可以自己验证 ctgz=ielte (e-e")sinx+i(e+e)cosx 8e-1t=(e7-e')cosx-i(e+e)sinx =2sin2x-i(ee) e2”+e-2c0s2x y (4)0c+y,f(2)=0. 解。因为在口=x+y中的分母是x+y奶,这种情况下改 用极坐标处理比较方便,这时 方sing. 注意到极坐标系中的科希-里曼方程,则 Ou 0 8v pi sing=1 Ou pm· 1 0c0s, 即 0u1 oe。sin. 6
du=(cosg)dp+(sing)dp =cos0d(-)+d(-c09) =d(-}cosw), 所以 fa)=合(-c0sg+isin)+C 合。4cC, 又因f四=名+c0,则c- 2,从而 22· x2-y2 (5)u=x+,fo)=0. 解:u的表达式的分母与上题相似,也含有因子x2+y多 改用极坐标后4=cos29.则 |80-品os2g合品, 即 80-ia2. dg=(-总cos2)g+(层in2g)dp 27
=2d(-sin29)+sin29d(-) =d(-ain2g). 所以 =-Disin20+C. 1()sin =e+C=是+C. 1 又因 f(∞)=0+C=0,则C=0,从而 fe)=是 (6)4=x2-y2+xy,f(0)=0. 解: Ou =2x+v= 因 04 多 dv=(2x+y)dy+(2y-x)dx =d(2xy+2y)+d(2xy-2) =d2xy+2-9. 。=2x2y-9+C. 所以fe)=x-y+xy+i〔2xy+2(w-]+iC =-)+2xy-(x-四-y〕+C
(+iy)i+i2x+iC =22-22+C. 又因 f(0)=0+iC=0,则C=0,从而 f)=(1-) (7)u=x3-3xy2,f(0)=0. 解: 因 y, -8部-6xw80 则 du=(3x2-3y*)dy+6xydx =d(3x2y-y)+1(3x2y) =d(3x2y-y), 0=3x2y-y3+C. 所以f(z)=x3-3xy2+i(3x2y-y3+c) =(x+iy)3+iC=23+iC. 又因f(0)=0+C=0,则C=0,从而 f(2)=23. (8)4=x3+6x2y-3xy2-2y8,f(0)=0. 解:(Ou -3x*+12xy-3=8 -80-6a+6xy+6-80 8x dv=(3x2+12xy-3y2)dy+(-6x2+6xy+6y2)dx =d(3x2y+6xy2-y3)+d(-2x3+3x2y+6xy2). 0=-2x3+3x2y+6xv2-y3+C. 所以f(2)=x3+6x2y-3xy2-2y3+: 29