电子料做女学 University of Electroale Science and Technelery of China /986 Chapter 9 Algorithmic strength reduction in filters and transforms Dr.Ling National Key Lab of Science and Technology on Communications
Chapter 9 Algorithmic strength reduction in filters and transforms Dr. Ling National Key Lab of Science and Technology on Communications
9.1 Introduction /96 target Algorithmic strength reduction in parallel FIR filters,discrete cosine transforms. Strength reduction leads to a reduction in hardware complexity by exploiting substructure sharing; This transformation can lead to reduction in silicon area or power consumption in a VLSI implementation or iteration period in a programmable DSP implementation. 2021年2月 2
2021年2月 2 9.1 Introduction target Algorithmic strength reduction in parallel FIR filters, discrete cosine transforms. Strength reduction leads to a reduction in hardware complexity by exploiting substructure sharing; This transformation can lead to reduction in silicon area or power consumption in a VLSI implementation or iteration period in a programmable DSP implementation
96 Parallel FIR Filters Formulation of Parallel FIR Filter Using Polyphase Decomposition design Fast FIR Filter Algorithms Discrete Cosine Transform and Inverse DCT Algorithm-Architecture Transformation Decimation-in-Frequency design Fast DCT for 2M-point DCT 2021年2月 3
2021年2月 3 Parallel FIR Filters Formulation of Parallel FIR Filter Using Polyphase Decomposition design Fast FIR Filter Algorithms Discrete Cosine Transform and Inverse DCT Algorithm-Architecture Transformation Decimation-in-Frequency design Fast DCT for 2M-point DCT
966 Fourier transform F(w)=Ff(t)]=f(t)e-iut dt. Laplac transform F)=Ef}=人feet Z transform Z({xn})=X(z)=∑x(njz-m n=-00 2021年2月 4
2021年2月 4 Fourier transform Laplac transform Z transform
9,2 Parallel FIR filters /96 Y(n)=ax(n)+bx(n-1)+cx(n-2) FIR filter X(n) D b N-tap FIR filter can be expressed in time Y(n) domain as N-1 y(n))=h(n)*x(n)=∑h()x(n-i),n=0,12,,o i=0 In z-domain as N-I Y(e)=lH(a)X(2)=∑h(n)z"∑x(n)z n=0 n=0 2021年2月 5
2021年2月 5 9.2 Parallel FIR filters FIR filter N-tap FIR filter can be expressed in time domain as In z-domain as Y(n)=ax(n)+bx(n-1)+cx(n-2) D D X X X + a b c Y(n) X(n) 1 0 ( ) ( ) ( ) ( ) ( ), 0,1,2,..., N i y n h n x n h i x n i n 0 1 0 ( ) ( ) ( ) ( ) ( ) n n N n n Y z H z X z h n z x n z